Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation and water desalination properties of bridged polysilsesquioxane membranes with divinylbenzene and divinylpyridine units

Abstract

Bridged polysilsesquioxanes are promising materials for reverse osmosis membranes because they exhibit robust properties. To investigate the effects of the polarity and rigidity of organic components of the polymer on the water permeability of the membrane, two alkoxysilane monomers, 2,5-bis[2-(triethoxysilyl)vinyl]pyridine (BTES-VP) and 1,4-bis[2-(triethoxysilyl)vinyl]benzene (BTES-VB), were synthesized to compare their hydrophilicity and water desalination properties. Water contact angle experiments on the film surfaces revealed that the BTES-VP-derived film was more hydrophilic than the BTES-VB-derived film. Density functional theory calculations of the monomer structures also suggested that BTES-VP is more polar and has a larger dipole moment than BTES-VB. Both membranes prepared from BTES-VP and BTES-VB rejected 95–97% of aqueous sodium chloride and displayed water permeances of 1.1 × 10−13 and 8.5 × 10−14 m3/(m2 Pa s), respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Misdan N, Lau WJ, Ismail AF. Seawater reverse osmosis (SWRO) desalination by a thin-film composite membrane—current development, challenges and future prospects. Desalination. 2012;287:228–37.

    Article  CAS  Google Scholar 

  2. Li D, Wang H. Recent developments in reverse osmosis desalination membranes. J Mater Chem. 2010;20:4551–66.

    Article  CAS  Google Scholar 

  3. Shintani T, Matsuyama H, Kurata N. Development of a chlorineresistant polyamide reverse osmosis membrane. Desalination. 2007;207:340–8.

    Article  CAS  Google Scholar 

  4. Daer S, Kharraz J, Giwa A, Hasan SW. Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination. 2015;367:37–48.

    Article  CAS  Google Scholar 

  5. Mayyahi AA. Important approaches to enhance reverse osmosis (RO) thin film composite (TFC) membranes performance. Membranes. 2018;8:68. https://doi.org/10.3390/membranes8030068.

    Article  PubMed Central  Google Scholar 

  6. Xue SM, Ji CH, Xu ZL, Tang YJ, Li RH. Chlorine resistant TFN nanofiltration membrane incorporated with octadecylamine-grafted GO and fluorine-containing monomer. J Membr Sci. 2018;545:185–95.

    Article  CAS  Google Scholar 

  7. Aljundi IH. Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles. Desalination. 2017;420:12–20.

    Article  CAS  Google Scholar 

  8. Xu R, Wang J, Kanezashi M, Yoshioka T, Tsuru T. Development of robust organosilica membranes for reverse osmosis. Langmuir. 2011;27:13996–9.

    Article  CAS  Google Scholar 

  9. Yamamoto K, Ohshita J. Bridged polysilsesquioxane membranes for water desalination. Polym J. 2019;51:1103–16.

    Article  CAS  Google Scholar 

  10. Xu R, Kanezashi M, Yoshioka T, Okuda T, Ohshita J, Tsuru T. Tailoring the Affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification. ACS Appl Mater Interfaces. 2013;5:6147–54.

    Article  CAS  Google Scholar 

  11. Xu R, Ibrahim SM, Kanezashi M, Yoshioka T, Ito K, Ohshita J, et al. New Insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges. ACS Appl Mater Interfaces. 2014;6:9357–64.

    Article  CAS  Google Scholar 

  12. Zhao L, Ho WSW. Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination. J Membr Sci. 2014;455:44–54.

    Article  CAS  Google Scholar 

  13. Waki M, Mizoshita N, Ohsuna T, Tani T, Inagaki S. Crystal-like periodic mesoporous organosilica bearing pyridine units within the framework. Chem Commun. 2010;46:8163–5.

    Article  CAS  Google Scholar 

  14. Li Y, Li S, Zhang K. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes. J Membr Sci. 2017;537:42–53.

    Article  CAS  Google Scholar 

  15. Ohshita J, Muragishi H, Yamamoto K, Mizumo T, Kanezashi M, Tsuru T. Preparation and separation properties of porous norbornane-bridged silica membrane. J Sol Gel Sci Technol. 2015;73:365–70.

    Article  CAS  Google Scholar 

  16. Mizumo T, Muragishi H, Yamamoto K, Ohshita J, Kanezashi M, Tsuru T. Preparation and separation properties of oxalylurea-bridged silica membranes. Appl Organomet Chem. 2015;29:433–8.

    Article  CAS  Google Scholar 

  17. Yamamoto K, Koge S, Sasahara K, Mizumo T, Kaneko Y, Kanezashi M, et al. Preparation of bridged polysilsesquioxane membranes from bis [3-(triethoxysilyl) propyl] amine for water desalination. Bull Chem Soc Jpn. 2017;90:1035–40.

  18. Yamamoto K, Muragishi H, Mizumo T, Gunji T, Kanezashi M, Tsuru T, et al. Diethylenedioxane-bridged microporous organosilica membrane for gas and water separation. Sep Purif Technol. 2018;207:370–6.

    Article  CAS  Google Scholar 

  19. Yamamoto K, Kanezashi M, Tsuru T, Ohshita J. Preparation of bridged polysilsesquioxane-based membranes containing 1, 2, 3-triazole moieties for water desalination. Polym J. 2017;49:401–6.

    Article  CAS  Google Scholar 

  20. Liu Y, Tan J, Choi W, Hsu JH, Han DS, Han A, et al. Influence of nanoparticle inclusions on the performance of reverse osmosis membranes. Environ Sci Water Res. 2018;4:411–20.

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, revision A.02. Wallingford, CT: Gaussian, Inc; 2009.

    Google Scholar 

  22. Guo M, Kanezashi M, Nagasawa H, Yu L, Yamamoto K, Gunji T, et al. Tailoring the microstructure and permeation properties of bridged organosilica membranes via control of the bond angles. J Membr Sci. 2019;84:56–65.

    Article  Google Scholar 

  23. Asay DB, Kim SHJ. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. Phys Chem B. 2005;109:16760–3.

    Article  CAS  Google Scholar 

  24. Marsmann HC. Silicon-29 NMR. eMagRes, Wiley 2011. https://doi.org/10.1002/9780470034590.emrstm0505.pub2.

  25. Wang J, Kanezashi M, Yoshioka T, Tsuru T. Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes. J Membr Sci. 2012;415–416:810–5.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP18K14287.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuki Yamamoto or Takahiro Gunji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, K., Saito, I., Amaike, Y. et al. Preparation and water desalination properties of bridged polysilsesquioxane membranes with divinylbenzene and divinylpyridine units. Polym J 52, 1367–1374 (2020). https://doi.org/10.1038/s41428-020-0386-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0386-x

This article is cited by

Search

Quick links