Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of bisphenols on the electrical conductivity and structure of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate)

Abstract

Poly(3,4-ethylenedioxythiophene) doped with poly(4-styrene sulfonate) (PEDOT: PSS) films have strong potential for application in flexible transparent conductive electrodes. As secondary dopants, some polar solvents, such as methanol, dimethyl sulfoxide, and N,N-dimethylformamide, have been revealed to enhance the electrical conductivity of PEDOT: PSS by orders of magnitude. In this study, the electrical conductivity of PEDOT: PSS is shown to be enhanced by a bisphenol additive, bis (4-hydroxyphenyl) sulfone (BPS). The effects of BPS on the chemical structure of PEDOT: PSS were investigated using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy. The PEDOT: PSS conformation is found to undergo a transformation into a highly conductive structure following the addition of BPS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou J, Fukawa T, Kimura M. Directional electromechanical properties of PEDOT/PSS films containing aligned electrospun nanofibers. Polym J. 2011;43:849–54.

    Article  CAS  Google Scholar 

  2. Groenendaal LB, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Poly(3,4‐ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater. 2000;12:481–94.

    Article  CAS  Google Scholar 

  3. Xi F, Bingang X, Shenghua L, Chaohua C, Jinzhao W, Feng Y. Transfer-printed PEDOT: PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells. ACS Appl Mater Interfaces. 2016;8:14029–36.

    Article  Google Scholar 

  4. Wakabayashi T, Katsunuma M, Kudo K, Okuzaki H. pH-tunable high-performance PEDOT: PSS aluminum solid electrolytic capacitors. ACS Appl Energy Mater. 2018;1:2157–63.

    Article  CAS  Google Scholar 

  5. Takano T, Masunaga H, Fujiwara A, Okuzaki H, Sasaki T. PEDOT nanocrystal in highly conductive PEDOT: PSS polymer films. Macromolecules. 2012;45:3859–65.

    Article  CAS  Google Scholar 

  6. Shi H, Liu C, Jiang Q, Xu J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater. 2015;1:1500017.

    Article  Google Scholar 

  7. Pasha A, Roy AS, Murugendrappa MV, Al-Hartomy OA, Khasim S. Conductivity and dielectric properties of PEDOT-PSS doped DMSO nanocomposites thin films. J Mater Sci Mater Electron. 2016;27:8332–9.

    Article  CAS  Google Scholar 

  8. Horii T, Li Y, Okuzaki H. Correlation between the hierarchical structure and electrical conductivity of PEDOT/PSS. Polym J. 2015;47:695–9.

    Article  CAS  Google Scholar 

  9. Ouyang J. Secondary doping methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices. Displays. 2013;34:423–36.

    Article  CAS  Google Scholar 

  10. Ichikawa S, Toshima N. Improvement of thermoelectric properties of composite films of PEDOT-PSS with xylitol by means of stretching and solvent treatment. Polym J. 2015;47:522–6.

    Article  CAS  Google Scholar 

  11. Okuzaki H, Harashina Y, Yan H. Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Europ. Polym J. 2009;45:256–61.

    CAS  Google Scholar 

  12. Konagaya S, Tawara Y, Inoue M, Furuhashi H, Terada M, Torimoto T. Effect of phenol derivatives on the conductivity enhancement of poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonic acid) (PEDOT: PSS), Proceedings of 18th European conference on composite materials. Applied Mechanics Laboratory: 2019.

  13. Xia Y, Sun K, Ouyang J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater. 2012;24:2436–40.

    Article  CAS  PubMed  Google Scholar 

  14. Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo YR, et al. Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization. Adv Mater. 2014;26:2268–72.

    Article  CAS  PubMed  Google Scholar 

  15. Panigrahy S, Kandasubramanian B. Polymeric thermoelectric PEDOT: PSS & composites: synthesis, progress, and applications. Eur Polym J. 2020;132:109426.

    Article  Google Scholar 

  16. Ouyang L, Musumeci C, Jafari MJ, Ederth T, Inganäs O. Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOTPSS film. ACS Appl Mater Interfaces. 2015;7:19764–73.

    Article  CAS  PubMed  Google Scholar 

  17. Aasmundtveit KE, Samuelsent EJ, Pettersson LAA, Inganäs O, Johansson T, Feidenhans R. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synth Met. 1999;101:561–4.

    Article  CAS  Google Scholar 

  18. Niu L, Kvarnström C, Fröberg K, Ivaska A. Electrochemically controlled surface morphology and crystallinity in poly(3,4-ethylenedioxythiophene) films. Synth Met. 2001;122:425–9.

    Article  CAS  Google Scholar 

  19. Kim EG, Brédas JL. Electronic evolution of poly(3,4-ethylenedioxythiophene) (PEDOT): from the isolated chain to the pristine and heavily doped crystals. J Am Chem Soc. 2008;130:16880–9.

    Article  CAS  PubMed  Google Scholar 

  20. Chaudhary N, Singh A, Aswal DK, Bharti M, Sharma A, Tillu AR, et al. High energy electron beam induced improved thermoelectric properties of PEDOT:PSS films. Polymer. 2020;202:122645.

    Article  CAS  Google Scholar 

  21. Babaie A, Bakhshandeh B, Abedi A, Mohammadnejad J, Shabani I, Ardeshirylajimi A. et al. Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering. Eur Polym J. 2020;140:110051.

    Article  CAS  Google Scholar 

  22. Sakunpongpitiporn PK, Phasuksom K, Paradee N, Sirivat A. Facile synthesis of highly conductive PEDOT:PSS via surfactant templates. RSC Adv. 2019;9:6363–78.

    Article  CAS  Google Scholar 

  23. Li X, Jiang Y, Shuai L, Wang L, Meng L, Mu X. Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J Mater Chem. 2012;22:1283–9.

    Article  Google Scholar 

  24. Khong SH, Sivaramakrishnan S, Png RQ, Wong LY, Chia PJ, Chua LL, et al. General photo-patterning of polyelectrolyte thin films via efficient ionic bis(fluorinated phenyl azide) photo-crosslinkers and their post-deposition modification. Adv Funct Mater. 2007;17:2490–9.

    Article  CAS  Google Scholar 

  25. Koizumi Y, Ohira M, Watanabe T, Nishiyama H, Tomita I, Inagi S. Synthesis of Poly (3,4-ethylenedioxythiophene)–platinum and poly (3,4-ethylenedioxythiophene) –poly(styrenesulfonate) hybrid fibers by alternating current bipolar electropolymerization. Langmuir. 2018;34:7598–603.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Weng B, Razal JM, Xu Q, Zhao C, Hou Y, et al. High-performance flexible allsolid-state supercapacitor from large free-standing graphene PEDOT/PSS Films. Sci Rep. 2015;5:17045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He H, Zhang L, Guan X, Cheng H, Liu X, Yu S, et al. Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl Mater Interfaces. 2019;11:26185–19.

    Article  CAS  PubMed  Google Scholar 

  28. Mikhaylova Y, Adam G, Haussler L, Eichhorn KJ, Voit B. Temperature-dependent FTIR spectroscopic and thermoanalytic studies of hydrogen bonding of hudroxyl (phenolic group) terminated hyperbranched aromatic polyesters. J, Mol Struct. 2006;788:80–88.

    Article  CAS  Google Scholar 

  29. Coleman MM, Skrovanek DJ, Hu J, Painter PC. Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules. 1988;21:59–65.

    Article  CAS  Google Scholar 

  30. Carmo M, Roepke T, Roth C, dos Santos AM, Poco JGR, Linardi MA. Novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications. J Power Sources. 2009;191:330–7.

    Article  CAS  Google Scholar 

  31. Al-Graiti W, Foroughi J, Liu Y, Chen J. Hybrid graphene/conducting polymer strip sensors for sensitive and selective electrochemical detection of serotonin. ACS Omega. 2019;4:22169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yin C, Yang C, Jiang M, Deng C, Yang L, Li J, et al. A novel and facile one-pot solvothermal synthesis of PEDOT–PSS/Ni–Mn–Co–O hybrid as an advanced supercapacitor electrode material. ACS Appl Mater Interfaces. 2016;8:2741–52.

    Article  CAS  PubMed  Google Scholar 

  33. Ravit R, Abdullah J, Ahmad I, Sulaiman Y. Electrochemical performance of poly(3, 4-ethylenedioxythipohene)/nanocrystalline cellulose (PEDOT/NCC) film for supercapacitor. Carbohydr Polym. 2019;203:128–38.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Z, Moussa M, Shi G, Meng Q, Wang R, Ma J. Compressible, electrically conductive, fibre-like, three-dimensional PEDOT-based composite aerogels towards energy storage applications. Comp Sci Technol. 2016;127:36–46.

    Article  CAS  Google Scholar 

  35. Ely F, Matsumoto A, Zoetebier B, Peressinotto VS, Hirata MK, de Sousa DA. Handheld and automated ultrasonic spray deposition of conductive PEDOT: PSS films and their application in AC EL devices. Org Electron. 201;15:1062–70.

  36. Zhou T, Orcid GX, Orcid SG, Huang M, Huang M, Luo J, et al. Simple InCl3 Doped PEDOT: PSS and UV–ozone treatment strategy: external quantum efficiency up to 21% for solution-processed organic light-emitting devices with a thermally activated delayed fluorescence emitter. ACS Appl Mater Interfaces. 2017;9:34139–45.

    Article  CAS  PubMed  Google Scholar 

  37. Ouyang J, Xu Q, Chu CW, Yang Y, Li G, Shinar J. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly (styrene sulfonate) film through solvent treatment. Polymer. 2004;45:8443–50.

    Article  CAS  Google Scholar 

  38. Mitraka E, Jafari MJ, Vagin M, Liu X, Fahlman M, Ederth T, et al. Oxygen-induced doping on reduced PEDOT. J Mater Chem A. 2017;5:4404–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Foundation for the Electrotechnology of Chubu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seira Morimune-Moriya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimune-Moriya, S., Tanahashi, H., Sasaki, K. et al. Effect of bisphenols on the electrical conductivity and structure of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate). Polym J 54, 707–713 (2022). https://doi.org/10.1038/s41428-022-00617-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00617-z

This article is cited by

Search

Quick links