Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Self-assembly of carbohydrate-based block copolymer systems: glyconanoparticles and highly nanostructured thin films

Abstract

Carbohydrates constitute a sustainable source of materials that has attracted growing interest due to their “green” aspects, biocompatibility, biodegradability and biorecognition properties. Their industrial applications at the macroscopic scale offer new solutions for biobased materials, and they have been applied in different sectors, such as cosmetics, health, packaging, or microelectronics. To gain more understanding and incorporate these systems into new challenges/applications and devices (e.g., bionanoelectronics) in response to the transition to a biobased economy, it is of great importance to control their self-assembly at the nanoscale. This has been the aim of our work during the past decade—we have used “click chemistry” and developed a new class of linear carbohydrate-based (so-called high χ) diblock copolymer systems resulting, via self-assembly, in highly nanostructured sub-10-nm-resolution thin films. In this focused review, we summarize some recent work illustrating the self-assembly properties leading to the design of glyconanoparticles and highly nanostructured thin films potentially of great importance in different applications and biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liddle JA, Gallatin GM. Nanomanufacturing: a perspective. ACS Nano. 2016;10:2995–3014.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nie Z, Kumacheva E. Patterning surfaces with functional polymers. Nat Mater. 2008;7:277–90.

    CAS  PubMed  Google Scholar 

  3. Chai J, Buriak JM. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano. 2008;2:489–501.

    CAS  PubMed  Google Scholar 

  4. Hamley IW. Angew Chem Int Ed. 2003;42:1692–712.

    CAS  Google Scholar 

  5. Bates FS, Fredrickson GH. Block copolymer thermodynamics: theory and experiment. Ann Rev Phys Chem 1990;41:525–57.

    CAS  Google Scholar 

  6. Bang J, Jeong U, Ryu DY, Russell TP, Hawker CJ. Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. Adv Mater. 2009;21:4769–92.

    CAS  PubMed  Google Scholar 

  7. Kim SH, Misner MJ, Xu T, Kimura M, Russell TP. Nanostructured titania powders by hydrothermal processing and spray drying. Adv Mater. 2004;16:226–32.

    CAS  Google Scholar 

  8. Vayer M, Hillmyer MA, Dirany M, Thevenin G, Erre R, Sinturel C. Perpendicular orientation of cylindrical domains upon solvent annealing thin films of polystyrene-b-polylactide. Thin Solid Films. 2010;518:3710–5.

    CAS  Google Scholar 

  9. Yin J, Yao X, Liou J-Y, Sun W, Sun Y-S, Wang Y. Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers. ACS Nano. 2013;7:9961–74.

    CAS  PubMed  Google Scholar 

  10. Bates CM, Maher MJ, Janes DW, Ellison CJ, Willson CG. Block Copolymer Lithography. Macromolecules. 2014;47:2–12.

    CAS  Google Scholar 

  11. Jung YS, Ross CA. Orientation-controlled self-assembled nanolithography using a polystyrene−polydimethylsiloxane block copolymer. Nano Lett 2007;7:2046–50.

    CAS  PubMed  Google Scholar 

  12. Jeong JW, Park WI, Kim M-J, Ross CA, Jung YS. Highly tunable self-assembled nanostructures from a poly(2-vinylpyridine-b-dimethylsiloxane) block copolymer. Nano Lett. 2011;11:4095–101.

    CAS  PubMed  Google Scholar 

  13. Aissou K, Nunns A, Manners I, Ross CA. Small. 2013, https://doi.org/10.1002/smll.201300657.

  14. Sinturel C, Bates FS, Hillmyer MA. High χ–LowNBlock polymers: how far can we go. ACS Macro Lett. 2015;4:1044–50.

    CAS  Google Scholar 

  15. Otsuka I, Tallegas S, Sakai Y, Rochas C, Halila S, Fort S, et al. Control of 10 nm scale cylinder orientation in self-organized sugar-based block copolymer thin films. Nanoscale. 2013;5:2637–41.

    CAS  PubMed  Google Scholar 

  16. Otsuka I, Zhang Y, Isono T, Rochas C, Kakuchi T, Satoh T, et al. Sub-10 nm scale nanostructures in self-organized linear di- and triblock copolymers and miktoarm star copolymers consisting of maltoheptaose and polystyrene. Macromolecules. 2015;48:1509–17.

    CAS  Google Scholar 

  17. Cushen JD, Otsuka I, Bates CM, Halila S, Fort S, Rochas C, et al. Oligosaccharide/silicon-containing block copolymers with 5 nm features for lithographic applications. ACS Nano. 2012;6:3424–33.

    CAS  PubMed  Google Scholar 

  18. Luo Y, Montarnal D, Kim S, Shi W, Barteau KP, Pester CW, et al. Poly(dimethylsiloxane-b-methyl methacrylate): a promising candidate for sub-10 nm patterning. Macromolecules. 2015;48:3422–30.

    CAS  Google Scholar 

  19. Rho Y, Aissou K, Mumtaz M, Kwon W, Pécastaings G, Mocuta C, et al. Laterally ordered sub-10 nm features obtained from directed self-assembly of si-containing block copolymer thin films. Small. 2015;11:6377–83.

    CAS  PubMed  Google Scholar 

  20. Aissou K, Mumtaz M, Fleury G, Portale G, Navarro C, Cloutet E, et al. Sub-10 nm features obtained from directed self-assembly of semicrystalline polycarbosilane-based block copolymer thin films. Adv Mater. 2015;27:261–5.

    CAS  PubMed  Google Scholar 

  21. Kennemur JG, Justin G, Yao L, Bates FS, Hillmyer MA. Sub-5 nm Domains in Ordered Poly(cyclohexylethylene)-block-poly(methyl methacrylate) Block Polymers for Lithography. Macromolecules. 2014;47:1411–8.

    CAS  Google Scholar 

  22. Gross AJ, Chen X, Giroud F, Travelet C, Borsali R, Cosnier S. Redox-active glyconanoparticles as electron shuttles for mediated electron transfer with bilirubin oxidase in solution. J Am Chem Soc 2017;139:16076–9.

    CAS  PubMed  Google Scholar 

  23. Hammond JL, Gross AJ, Giroud F, Travelet C, Borsali R, Cosnier S. Solubilized enzymatic fuel cell (SEFC) for quasi-continuous operation exploiting carbohydrate block copolymer glyconanoparticle mediators. ACS Energy Lett 2019;4:142–48.

    CAS  Google Scholar 

  24. Carrière M, Buzzetti PHM, Gorgy K, Mumtaz M, Travelet C, Borsali R, et al. Functionalizable glyconanoparticles for a versatile redox platform. Nanomaterials. 2021;11:1162.

    PubMed  PubMed Central  Google Scholar 

  25. Zepon KM, Otsuka I, Bouilhac C, Curti Muniz E, Soldi V, Borsali R. Self-assembly of oligosaccharide-b-PMMA block copolymer systems: glyco-nanoparticles and their degradation under UV exposure. Langmuir. 2016;32:4538–45. https://doi.org/10.1021/Acs.Langmuir.6b00212.

    Article  CAS  PubMed  Google Scholar 

  26. Isono T, Miyachi K, Satoh Y, Nakamura R, Zhang Y, Otsuka I, et al. Self-assembly of maltoheptaose-block-polycaprolactone copolymers: carbohydrate-decorated nanoparticles with tunable morphology and size in aqueous media. Macromolecules. 2016;49:4178–4194.

    CAS  Google Scholar 

  27. Gross AJ, Haddad R, Travelet C, Reynaud E, Audebert P, Borsali R, et al. Redox-active carbohydrate-coated nanoparticles: self-assembly of a cyclodextrin-polystyrene glycopolymer with tetrazine-naphthalimide. Langmuir. 2016;32:11939–45. https://doi.org/10.1021/Acs.Langmuir.6b03512.

    Article  CAS  PubMed  Google Scholar 

  28. Zepon KM, Otsuka I, Bouilhac C, Curti Muniz E, Soldi V, Borsali R. Glyco-nanoparticles made from self-assembly of maltoheptaose-block-poly(methyl methacrylate): micelle, reverse micelle, and encapsulation. Biomacromolecules. 2015;16:2012–24.

    CAS  PubMed  Google Scholar 

  29. Mazzarino L, Otsuka I, Halila S, Bubniak Ldos S, Mazzucco S, Santos-Silva MC, et al. Xyloglucan-block-poly(ϵ-caprolactone) copolymer nanoparticles coated with chitosan as biocompatible mucoadhesive drug delivery system. Macromol Biosci. 2014;14:709–19.

    CAS  PubMed  Google Scholar 

  30. Otsuka I, Osaka M, Sakai Y, Travelet C, Putaux JL, Borsali R. Self-assembly of maltoheptaose-block-polystyrene into micellar nanoparticles and encapsulation of gold nanoparticles. Langmuir. 2013;29:15224–30.

    CAS  PubMed  Google Scholar 

  31. Aissou K, Pfaff A, Giocomelli C, Travelet C, Mueller A, Borsali R. Fluorescent vesicles consisting of galactose-based amphiphilic copolymers with a π-conjugated sequence self-assembled in water. Macromol Rapid Commun. 2011;32:912–6.

    CAS  PubMed  Google Scholar 

  32. Löfstrand A, Jafari Jam R, Mothander K, Nylander T, Mumtaz M, Vorobiev A, et al. Poly(styrene)-block-maltoheptaose films for sub-10 nm pattern transfer: implications for transistor fabrication. ACS Appl Nano Mater. 2021;4:5141–51.

    PubMed  PubMed Central  Google Scholar 

  33. Sakai-Otsuka Y, Ogawa Y, Satoh T, Chen WC, Borsali R. Carbohydrate-attached fullerene derivative for selective localization in ordered carbohydrate-block-poly(3-hexylthiophene) nanodomains. Carbohydr Polym. 2021;255:117528.

    CAS  PubMed  Google Scholar 

  34. Sakai-Otsuka Y, Nishiyama Y, Putaux JL, Brinkmann M, Satoh T, Chen WC, et al. Competing molecular packing of blocks in a lamella-forming carbohydrate-block-poly(3-hexylthiophene) copolymer. Macromolecules. 2021;53:9054–64.

    Google Scholar 

  35. Mumtaz M, Takagi Y, Mamiya H, Tajima K, Bouilhac C, Isono T. et al. Sweet pluronic poly(propylene oxide)-b-oligosaccharide block copolymer systems: toward sub-4 nm thin-film nanopattern resolution. Eur Polym J. 2020;134:109831

    CAS  Google Scholar 

  36. Tammelin T, Abburi R, Gestranius M, Laine C, Setälä H, Österberg M. Correlation between cellulose thin film supramolecular structures and interactions with water. Adv Mater Interfaces, 2020;7:1901737–82.

    Google Scholar 

  37. Chuang TH, Chiang YC, Hsieh HC, Isono T, Huang CW, Borsali R, et al. Nanostructure- and orientation-controlled resistive memory behaviors of carbohydrate-block-polystyrene with different molecular weights via solvent annealing. ACS Appl Mater Interfaces. 2020;12:23217–24.

    CAS  PubMed  Google Scholar 

  38. Isono T, Kawakami N, Watanabe K, Yoshida K, Otsuka I, Mamiya H, et al. Microphase separation of carbohydrate-based star-block copolymers with sub-10 nm periodicity. Polym Chem. 2019;10:1119–29.

    CAS  Google Scholar 

  39. Isono T, Komaki R, Lee C, Kawakami N, Ree BJ, Watanabe K, et al. Rapid access to discrete and monodisperse block co-oligomers from sugar and terpenoid toward ultrasmall periodic nanostructures. Commun Chem. 2020;3:135.

    CAS  Google Scholar 

  40. Hung CC, Nakahira S, Chiu YC, Isono T, Wu HC, Watanabe K, et al. Control over molecular architectures of carbohydrate-based block copolymers for stretchable electrical memory devices. Macromolecules. 2018;51:4966–75.

    CAS  Google Scholar 

  41. Yoshida K, Tanaka S, Yamamoto T, Tajima K, Borsali R, Isono T, et al. Chain-end functionalization with a saccharide for 10 nm microphase separation: “Classical” PS-b-PMMA versus PS-b-PMMA-saccharide. Macromolecules. 2018;51:8870–7.

    CAS  Google Scholar 

  42. Isono T, Nakahira S, Hsieh H-C, Katsuhara S, Mamiya H, Yamamoto T, et al. Carbohydrates as hard segments for sustainable elastomers: carbohydrates direct the self-assembly and mechanical properties of fully bio-based block copolymers. Macromolecules. 2020;53:5408–17.

    CAS  Google Scholar 

  43. Isono T, Ree BJ, Tajima K, Borsali R, Satoh T. Highly ordered cylinder morphologies with 10 nm scale periodicity in biomass-based block copolymers. Macromolecules. 2018;51:428–437.

    CAS  Google Scholar 

  44. Hung CC, Chiu YC, Wu HC, Lu C, Bouilhac C, Otsuka I, et al. Conception of stretchable resistive memory devices based on nanostructure-controlled carbohydrate-block-polyisoprene block copolymers. Adv Funct Mater. 2017;27:1–10.

    Google Scholar 

  45. Sakai-Otsuka Y, Zaioncz S, Otsuka I, Halila S, Rannou P, Borsali R. Self-assembly of carbohydrate-block-poly(3-hexylthiophene) diblock copolymers into sub-10 nm scale lamellar structures. Macromolecules. 2017;50:3365–76.

    CAS  Google Scholar 

  46. Liao Y, Chen WC, Borsali R. Carbohydrate-based block copolymer thin films: Ultrafast nano-organization with 7 nm resolution using microwave energy. Adv. Mater. 2017;1701645:1–6.

  47. Otsuka I, Nilsson N, Suyatin DB, Maximov I, Borsali R. Carbohydrate-based block copolymer systems: directed self-assembly for nanolithography applications. Soft Matter. 2017;13:7406–11.

    CAS  PubMed  Google Scholar 

  48. Sakai-Otsuka Y, Zaioncz S, Otsuka I, Halila S, Rannou P, Borsali R. Self-assembly of carbohydrate-block-poly(3-hexylthiophene) diblock copolymers into sub-10 nm scale lamellar structures. Macromolecules. 2017;50:3365–76.

    CAS  Google Scholar 

  49. Noronha CM, Otsuka I, Bouilhac C, Rochas C, Barreto PLM, Borsali R. Self-assembly of maltoheptaose-b-PMMA block copolymer systems: 10 nm Resolution in thin film and bulk states. Carbohydr Polym. 2017;170:15–22.

    CAS  PubMed  Google Scholar 

  50. Isono T, Otsuka I, Halila S, Borsali R, Kakuchi T, Satoh T. Sub-20 nm microphase-separated structures in hybrid block copolymers consisting of polycaprolactone and maltoheptaose. J Photopolym Sci Technol. 2015;28:635–42.

    CAS  Google Scholar 

  51. Chiu YC, Sun HS, Lee WY, Halila S, Borsali R, Chen WC. Oligosaccharide carbohydrate dielectrics toward high-performance non-volatile transistor memory devices. Adv Mater. 2015;27:6257–64.

    CAS  PubMed  Google Scholar 

  52. Chiu C, Otsuka I, Halila S, Borsali R, Chen C. High-performance nonvolatile transistor memories of pentacence using the green electrets of sugar-based block copolymers and their supramolecules. Adv Funct Mater. 2014;24:4240–9.

    CAS  Google Scholar 

  53. Isono T, Otsuka I, Suemasa D, Rochas C, Satoh T, Borsali R, et al. Synthesis, self-assembly, and thermal caramelization of maltoheptaose-conjugated polycaprolactones leading to spherical, cylindrical, and lamellar morphologies. Macromolecules. 2013;46:8932–40.

    CAS  Google Scholar 

  54. Tallegas S, Baron T, Gay G, Aggrafeil C, Salhi B, Chevolleau T, et al. Block copolymer technology applied to nanoelectronics: Block copolymer technology applied to nanoelectronics. Phys Status Solidi C. 2013;10:1195–206.

    CAS  Google Scholar 

  55. Isono T, Otsuka I, Kondo Y, Halila S, Fort S, Rochas C, et al. Sub-10 nm nano-organization in AB2- and AB3-type miktoarm star copolymers consisting of maltoheptaose and polycaprolactone. Macromolecules. 2013;46:1461–9.

    CAS  Google Scholar 

  56. Otsuka I, Isono T, Rochas C, Halila S, Fort S, Satoh T, et al. 10 nm scale cylinder–cubic phase transition induced by caramelization in sugar-based block copolymers. ACS Macro Lett. 2012;1:1379–82.

    CAS  Google Scholar 

  57. Cushen JD, Otsuka I, Bates CM, Halila S, Fort S, Rochas C, et al. Oligosaccharide/silicon-containing block copolymers with 5 nm features for lithographic applications. ACS Nano. 2012;6:3424–33.

    CAS  PubMed  Google Scholar 

  58. Aissou K, Otsuka I, Rochas C, Fort S, Halila S, Borsali R. Nano-organization of amylose-b-polystyrene block copolymer films doped with bipyridine. Langmuir. 2011;27:4098–103.

    CAS  PubMed  Google Scholar 

  59. Kolb HC, Finn MG, Sharpless KB Angewandte Chemie, International Edition. 2001;40:2004–21. (Wiley-VCH Verlag GmbH).

  60. Guo Z, Jin Y, Liang T, Liu Y, Xu Q, Liang X, et al. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "Click beta-cyclodextrin" stationary phase. J Chromatogr A. 2009;121:257–63.

    Google Scholar 

  61. Otsuka I, Fuchise K, Halila S, Fort S, Aissou K, Pignot-Paintrand I, et al. Thermoresponsive vesicular morphologies obtained by self-assemblies of hybrid oligosaccharide-block-poly(N-isopropylacrylamide) copolymer systems. Langmuir, 2010;26:2325–32.

  62. Liao Y, Goujon LJ, Reynaud E, Halila S, Gibaud A, Wei B, et al. Self-assembly of copper-free maltoheptaose-block-polystyrene nanostructured thin films in real and reciprocal space. Carbohydr Polym. 2019;212:222–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HL thanks the China Scholarship Council (CSC) for his scholarship support (grant #201806500007). RB and W.-C.C thank the CNRS, Univ Grenoble Alpes and NTU for their financial support of the IRP (International Research Project: Green Material Institute- France-Taiwan). This work was also financially supported by a JSPS Grant-in-Aid for Scientific Research (B) (No. 20H02792, No. 19H02769), JSPS Fund for the Promotion of Joint International Research (Fostering Joint International Research (B)) (No. 21KK0096), the Photoexcitonix Project (Hokkaido University), and the Creative Research Institute (Hokkaido University). The NanoBio-ICMG platforms (FR 2607) are acknowledged for their support for NMR block copolymer characterization and AFM for the different thin films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redouane Borsali.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Mumtaz, M., Isono, T. et al. Self-assembly of carbohydrate-based block copolymer systems: glyconanoparticles and highly nanostructured thin films. Polym J 54, 455–464 (2022). https://doi.org/10.1038/s41428-021-00604-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00604-w

This article is cited by

Search

Quick links