Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation of double-chain polysiloxane by template polymerization and the coexistence of water repellency and adhesion to glass in its cast film

Abstract

In this study, soluble double-chain (ladder-like) polysiloxane (DC-PS) was successfully prepared by intramolecular polycondensation (template polymerization) of polysiloxane, in which diethoxysilyl groups were introduced into the side chains, using hydrochloric acid and purified water as the catalysts. Based on the solubility, gel permeation chromatography, IR, 1H NMR, 29Si NMR, and transmission electron microscopy (TEM) results, it was found that DC-PS has a structure in which two polysiloxane chains are connected in parallel by urea bonds, although it is slightly defective, as the cyclic trimer component and the silanol group are present. In addition, thermogravimetric analysis (TGA) confirmed that DC-PS showed high thermal stability. Furthermore, a DC-PS cast film had relatively high water repellency, adhesion to a glass substrate, and surface hardness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arnold C Jr. Stability of high-temperature polymers. J Polym Sci Macromol Rev. 1979;14:265–378.

    Article  CAS  Google Scholar 

  2. Tessler MM. Theoretical studies on the degradation of ladder polymers. J Polym Sci Part A-1. 1966;4:2521–32.

    Article  CAS  Google Scholar 

  3. Hiraoka H, Yamaoka T. Acid hardenable, spin-coatable silicon ladder polymer systems as resist materials. Microelectron Eng. 1991;13:61–4.

    Article  CAS  Google Scholar 

  4. Kammerer H, Ozaki S. Ein neuer Weg zur Herstellung von Oligomeren aus Acryl- und Vinylverbindungen; Modell einer Matrizenreaktion. Makromol Chem. 1966;91:1–9.

    Article  Google Scholar 

  5. Kammerer H, Jung A. Uber die herstellung molekulareinheitlicher cyclooligomerer und ihre spaltung. Makromol Chem. 1966;101:284–95.

    Article  Google Scholar 

  6. Jantas R, Polowinski S. Synthesis, polymerization, and copolymerization of multimethacrylate in matrix of poly(viny1 alcohol). J Polym Sci Part A Polym Chem. 1986;24:1819–27.

    Article  CAS  Google Scholar 

  7. Jantas R. Synthesis and polymerization of a multimethacrylate. J Polym Sci Part A Polym Chem. 1990;28:1973–82.

    Article  CAS  Google Scholar 

  8. Jantas R, Janowska G, Szocik H, Polowinski S. Thermal analysis of ladeer polymers obtained from multimonomers. J Therm Anal Calorim. 2000;60:371–6.

    Article  CAS  Google Scholar 

  9. Jantas R, Szumilewicz J, Strobin G, Polowinski S. Template polymerization of multiacrylate. J Polym Sci Part A Polym Chem. 1994;32:295–300.

    Article  CAS  Google Scholar 

  10. Jantas R, Polowinski S, Strobin G. Studies on the process and products of multimethacrylate polymerisation. Polym Int. 1995;37:315–8.

    Article  CAS  Google Scholar 

  11. Saito R, Iijima Y, Yokoi K. Atom transfer radical polymerization of poly(2-methacryloyloxyethyl methacrylate). Macromolecules. 2006;39:6838–44.

    Article  CAS  Google Scholar 

  12. Saito R, Iijima Y. Ladder-like polymer synthesized by template polymerization of poly(2-methacryloyloxyethyl methacrylate): architectural effect of ladder-like polymer on glass transition temperature. Polym Adv Technol. 2009;20:280–4.

    Article  CAS  Google Scholar 

  13. Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.

    Article  CAS  Google Scholar 

  14. Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K. Substituent effects on the sol-gel chemistry of organotrialkoxysilanes. Chem Mater. 2000;12:3624–32.

    Article  CAS  Google Scholar 

  15. Samthong C, Laine RM, Somwangthanaroj A. Synthesis and characterization of organic/inorganic epoxy nanocomposites from poly(aminopropyl/phenyl)silsesquioxanes. J Appl Polym Sci. 2013;128:3601–8.

    Article  CAS  Google Scholar 

  16. Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  CAS  Google Scholar 

  17. Laine RM, Roll MF. Polyhedral phenylsilsesquioxanes. Macromolecules. 2011;44:1073–109.

    Article  CAS  Google Scholar 

  18. Kuo SW, Chang FC. POSS related polymer nanocomposites. Prog Polym Sci. 2011;36:1649–96.

    Article  CAS  Google Scholar 

  19. Wang F, Lu X, He C. Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. J Mater Chem. 2011;21:2775–82.

    Article  CAS  Google Scholar 

  20. Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem. 2012;22:1733–46.

    Article  CAS  Google Scholar 

  21. Brown JF Jr, Vogt LH Jr, Katchman A, Eustance JW, Kiser KM, Krantz KW. Double chain polymers of phenylsilsesquioxane. J Am Chem Soc. 1960;82:6194–5.

    Article  CAS  Google Scholar 

  22. Brown JF Jr, Vogt LH Jr, Prescott PI. Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc. 1964;86:1120–5.

    Article  CAS  Google Scholar 

  23. Zhang X, Xie P, Shen Z, Jiang J, Zhu C, Li H, et al. Confined synthesis of a cis-isotactic ladder polysilsesquioxane by using a π-stacking and H-Bonding superstructure. Angew Chem Int Ed. 2006;19:3112–6.

    Article  Google Scholar 

  24. Choi SS, Lee HS, Hwang SS, Choi DH, Baek KY. High photo- and electroluminescence efficiencies of ladder-like structured polysilsesquioxane with carbazole groups. J Mater Chem. 2010;20:9852–4.

    Article  CAS  Google Scholar 

  25. Ren Z, Sun D, Li H, Fu Q, Ma D, Zhang J, et al. Synthesis of dibenzothiophene-containing ladder polysilsesquioxane as a blue phosphorescent host material. Chem Eur J. 2012;18:4115–23.

    Article  CAS  Google Scholar 

  26. Unno M, Suto A, Matsumoto H. Pentacyclic laddersiloxane. J Am Chem Soc. 2002;124:1574–5.

    Article  CAS  Google Scholar 

  27. Unno M, Chang S, Matsumoto H. cis-trans-cis-Tetrabromotetramethylcyclotetrasiloxane: a versatile precursor of ladder silsesquioxanes. Bull Chem Soc Jpn. 2005;78:1105–9.

    Article  CAS  Google Scholar 

  28. Seki H, Kajiwara T, Abe Y, Gunji T. Synthesis and structure of ladder polymethylsilsesquioxanes from sila-functionalized cyclotetrasiloxanes. J Organomet Chem. 2010;695:1363–9.

    Article  CAS  Google Scholar 

  29. Lee HS, Choi SS, Baek KY, Hong SM, Lee EC, Lee JC, et al. Synthesis and structure characterization of ladder-like polymethylsilsesquioxane (PMSQ) by isolation of stereoisomer. Eur Polym J. 2012;48:1073–81.

    Article  CAS  Google Scholar 

  30. Kaneko Y, Iyi N, Kurashima K, Matsumoto T, Fujita T, Kitamura K. Hexagonal-structured polysiloxane material prepared by sol-gel reaction of aminoalkyltrialkoxysilane without using surfactants. Chem Mater. 2004;16:3417–23.

    Article  CAS  Google Scholar 

  31. Kaneko Y, Iyi N, Matsumoto T, Kitamura K. Synthesis of rodlike polysiloxane with hexagonal phase by sol–gel reaction of organotrialkoxysilane monomer containing two amino groups. Polymer. 2005;46:1828–33.

    Article  CAS  Google Scholar 

  32. Kaneko Y, Iyi N. Sol-gel synthesis of rodlike polysilsesquioxanes forming regular higher-ordered Nanostructure. Z Kristallogr 2007;222:656–62.

    Article  CAS  Google Scholar 

  33. Kaneko Y, Toyodome H, Shoiriki M, Iyi N. Preparation of ionic silsesquioxanes with regular structures and their hybridization. Int J Polym Sci. 2012;684278.

  34. Kaneko Y. Preparation of ionic silsesquioxanes with regular structures and their hybridization. Kobunshi Ronbunshu. 2014;71:443–56.

    Article  CAS  Google Scholar 

  35. Toyodome H, Kaneko Y, Shikinaka K, Iyi N. Preparation of carboxylate group-containing rod-like polysilsesquioxane with hexagonally stacked structure by sol-gel reaction of 2-cyanoethyltriethoxysilane. Polymer. 2012;53:6021–6.

    Article  CAS  Google Scholar 

  36. Kaneko Y, Toyodome H, Mizumo T, Shikinaka K, Iyi N. Preparation of a sulfo-group-containing rod-like polysilsesquioxane with a hexagonally stacked structure and its proton conductivity. Chem Eur J. 2014;20:9394–9.

    Article  CAS  Google Scholar 

  37. Harada A, Shikinaka K, Ohshita J, Kaneko Y. Preparation of a one-dimensional soluble polysilsesquioxane containing phosphonic acid side-chain groups and its thermal and proton-conduction properties. Polymer. 2017;121:228–33.

    Article  CAS  Google Scholar 

  38. Kinoshita S, Watase S, Matsukawa K, Kaneko Y. Selective synthesis of cis−trans−cis cyclic tetrasiloxanes and the formation of their two-dimensional layered aggregates. J Am Chem Soc. 2015;137:5061–5.

    Article  CAS  Google Scholar 

  39. Sugahara Y, Okada S, Kuroda K, Kato C. 29Si-NMR study of hydrolysis and initial polycondensation processes of organoalkoxysilanes. I. Dimethyldiethoxysilane. J Non-Cryst Solids. 1992;139:25–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MN synthesized and analyzed compounds and wrote the draft manuscript. KS performed TEM measurements. YK devised a concept and synthesis strategy. In addition, he wrote and edited the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yoshiro Kaneko.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobayashi, M., Shikinaka, K. & Kaneko, Y. Preparation of double-chain polysiloxane by template polymerization and the coexistence of water repellency and adhesion to glass in its cast film. Polym J 54, 11–20 (2022). https://doi.org/10.1038/s41428-021-00566-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00566-z

Search

Quick links