Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation of molecularly well-defined silicone resins based on trifluoropropyl-substituted trisilanol and their thermal, mechanical, and UV-resistance properties

Abstract

We prepared flexible free-standing films of trifluoropropyl-substituted open-cage silsesquioxane-pendant polysiloxane by optimizing the sol-gel reaction conditions of tris(dimethoxysilyl-ethyl-dimethylsiloxy)-heptatrifluoropropyl-substituted open-cage silsesquioxane (1). The polycondensation of 1 was fully achieved even at 50 °C for 6 h under vacuo. 29Si CP-MAS NMR analysis indicated that the flexible free-standing films, polycondensed at 50 °C and 180 °C, included cyclotrisiloxane (D3) and linear siloxane (Dlinear) structures. The elastic modulus and decomposition temperature at 5% mass weight loss (Td5) of the product by polycondensation at 180 °C under N2 were significantly greater than those for the 50 °C product. Significant changes in the UV‒vis spectra of the resulting transparent films were not observed even after 13 days of UV irradiation in air. In contrast, UV irradiation of the isobutyl-substituted counterpart under air clearly caused a decrease in its transmittance due to autoxidative degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sawvel AM, Crowhurst JC, Mason HE, Oakdale JS, Ruelas S, Eshelman HV, et al. Spectroscopic signatures of MQ-resins in silicone elastomers. Macromolecules. 2021;54:4300–12.

    Article  CAS  Google Scholar 

  2. Robeyns C, Picard L, Ganachaud F. Synthesis, characterization and modification of silicone resins: An “Augmented Review”. Prog Org Coat. 2018;125:287–315.

    Article  CAS  Google Scholar 

  3. Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.

    Article  CAS  Google Scholar 

  4. Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem. 2012;22:1733–46.

    Article  CAS  Google Scholar 

  5. Mikoshiba S, Hayase S. Preparation of low density poly(Methylsilsesquioxane)s for LSI interlayer dielectric with low dielectric constant. Fabrication of angstrom size pores prepared by baking trifluoropropylsilyl copolymers. J Mater Chem. 1999;9:591–8.

    Article  CAS  Google Scholar 

  6. Ro HW, Park ES, Soles CL, Yoon DY. Structure-property relationship for methylsilsesquioxanes. Chem Mater. 2010;22:1330–9.

    Article  CAS  Google Scholar 

  7. Lee L-H, Chen W-C, Liu W-C. Structure control of oligomeric methyl silsesquioxane precursors and their thin-film properties. J Polym Sci: Part A: Polym Chem. 2002;40:1560–71.

    Article  CAS  Google Scholar 

  8. Yang S, Kwak SY, Jin J, Kim JS, Choi Y, Paik KW, et al. Thermally resistant UV-curable epoxy-siloxane hybrid materials for light emitting diode (LED) encapsulation. J Mater Chem. 2012;22:8874–80.

    Article  CAS  Google Scholar 

  9. Bae JY, Kim HY, Lim YW, Kim YH, Bae BS. Optically recoverable, deep ultraviolet (UV) stable and transparent sol-gel fluoro siloxane hybrid material for a UV LED encapsulant. RSC Adv. 2016;6:26826–34.

    Article  CAS  Google Scholar 

  10. Bae JY, Kim YH, Kim HY, Kim YB, Jin J, Bae BS. Ultraviolet light stable and transparent sol-gel methyl siloxane hybrid material for UV light-emitting diode (UV LED) encapsulant. ACS Appl Mater Interfaces. 2015;7:1035–9.

    Article  CAS  PubMed  Google Scholar 

  11. Fischer HR, Semprimoschnig C, Mooney C, Rohr T, van Eck ERH, Verkuijlen MHW. Degradation mechanism of silicone glues under UV irradiation and options for designing materials with increased stability. Polym Degrad Stab. 2013;98:720–6.

    Article  CAS  Google Scholar 

  12. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;86:633–43.

    Article  Google Scholar 

  13. Laine RM. Nanobuilding blocks base on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanews. J Mater Chem. 2005;15:3725–44.

    Article  CAS  Google Scholar 

  14. Cordes DB, Lickiss PD, Rataboul F. Recent development in the chemistry of cubic polyhedral oligosilisesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  CAS  PubMed  Google Scholar 

  15. Imoto H, Nakao Y, Nishizawa N, Fujii S, Nakamura Y, Naka K. Tripodal polyhedral oligomeric silsesquioxanes as novel class of three-dimensional emulsifiers. Polym J. 2015;47:609–15.

    Article  CAS  Google Scholar 

  16. Miyasaka M, Fujiwara Y, Kudo H, Nishikubo T. Synthesis and characterization of hyperbranched polymer consisting of silsesquioxane derivatives. Polym J. 2010;42:799–803.

    Article  CAS  Google Scholar 

  17. Imoto H, Ishida A, Hashimoto M, Mizoue Y, Yusa S, Naka K. Soluble network polymers based on trifunctional open-cage silsesquioxanes. Chem Lett. 2019;48:1266–9.

    Article  CAS  Google Scholar 

  18. Li L, Imoto H, Naka K. Soluble network polymers based on trifluoropropyl-substituted open-cage silsesquioxane: Synthesis, properties, and application for surface modifiers. J Appl Polym Sci. 2021;138:50167.

    Article  CAS  Google Scholar 

  19. Feher FJ, Newman DA, Walzer JF. Silsesquioxanes as model for silica surfaces. J Am Chem Soc. 1989;111:1741–8.

    Article  CAS  Google Scholar 

  20. Yuasa S, Sato Y, Imoto H, Naka K. Thermal properties of open-cage silsesquioxanes: The effect of substituents at the corners and opening moieties. Bull Chem Soc Jpn. 2019;92:127–32.

    Article  CAS  Google Scholar 

  21. Nakano T, Okamoto K, Imoto H, Naka K. Double-cyclopolymerization using trifunctional incompletely-condensed cage silsesquioxane with methacryloyl groups. Polym J. 2023;55:193–201.

    Article  CAS  Google Scholar 

  22. Iacono ST, Vij A, Grabow W, Smith DW, Mabry JM. Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures. Chem Commun. 2007;47:4992–4.

    Article  Google Scholar 

  23. Ramirez SM, Diaz YJ, Campos R, Stone RL, Haddad TS, Mabry JM. Incompletely condensed fluoroalkyl silsesquioxanes and derivatives: precursors for low surface energy materials. J Am Chem Soc. 2011;133:20084–7.

    Article  CAS  PubMed  Google Scholar 

  24. Choi W, Tuteja A, Chhatre S, Mabry JM, Cohen RE, McKinley GH. Fabrics with tunable oleophobicity. Adv Mater. 2009;21:2190–5.

    Article  CAS  Google Scholar 

  25. Mabry JM, Vij A, Iacono ST, Viers BD. Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angew Chem Int Ed. 2008;47:4137–40.

    Article  CAS  Google Scholar 

  26. Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A. Hygro-responsive membranes for effective oil-water separation. Nat Commun. 2012;3:1025.

    Article  PubMed  Google Scholar 

  27. Ramirez SM, Diaz YJ, Sahagun CM, Duff MW, Lawal OB, Iacono ST, et al. Reversible addition-fragmentation chain transfer (RAFT) copolymerization of fluoroalkyl polyhedral oligomeric silsesquioxane (F-POSS) macromers. Polym Chem. 2013;4:2230–4.

    Article  CAS  Google Scholar 

  28. Dobashi Y, Ohkatsu Y. Dependence of ultraviolet absorbers’ performance on ultraviolet wavelength. Polym Degrad Stab. 2008;93:436–47.

    Article  CAS  Google Scholar 

  29. Liu K, Deng L, Zhang T, Shen K, Wang X. Facile fabrication of environmentally friendly, waterproof, and breathable nanofibrous membranes with high UV-resistant performance by one-step electrospinning. Ind Eng Chem Res. 2020;59:4447–58.

    Article  CAS  Google Scholar 

  30. Li L, Imoto H, Okada A, Kanaori K, Naka K. UV-resistant trifuluoropropyl-substituted open-cage silsesquioxane-pendant polysiloxanes. ACS Appl Polym Mater. 2021;3:1368–75.

    Article  CAS  Google Scholar 

  31. Burger, C; Kreuzer, F-H Polysiloxanes and polymers containing siloxane groups. In Silicon in Polymer Synthesis; Kricheldorf, HR, Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1996; 113–222.

  32. Zhang Z, Gorman BP, Dong H, Orozco-Teran RA, Mueller DW, Reidy RF. Investigation of polymerization and cyclization of dimethyldiethoxysilane by 29Si NMR and FTIR. J Sol-Gel Sci Technol. 2003;28:159–65.

    Article  CAS  Google Scholar 

  33. Casserly TB, Gleason KK. Density functional theory calculation of 29Si NMR chemical shifts of organosiloxanes. J Phys Chem B. 2005;109:13605–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (No. 19H02764 and 23K17944) from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Naka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosaka, M., Nakano, T., Kanaori, K. et al. Preparation of molecularly well-defined silicone resins based on trifluoropropyl-substituted trisilanol and their thermal, mechanical, and UV-resistance properties. Polym J 56, 481–489 (2024). https://doi.org/10.1038/s41428-024-00886-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-024-00886-w

Search

Quick links