Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation and analyses of stereocomplexes of a polylactide homopolymer and copolymer with poly(ethylene glycol) and urethane capping

Abstract

Polylactide (PLA) stereocomplexes (SCs) formed by poly(L,L-lactide) (PLLA) and poly(D,D-lactide) (PDLA) are well known, and their derivatives and copolymers have also been reported. However, little research has been conducted on SCs with a combination of one enantiomer of a copolymer and a homopolymer. In this study, we selected a PLA copolymer with poly(ethylene glycol) (PEG) and a urethane capping PLA bearing almost the same molecular weights as PLA segments and prepared various SC samples. Depending on the combination of L-isomers and D-isomers, the SCs were classified as a Homo-SC, Co-SC, and Multi-SC: the Homo-SC had the same polymer chain ends and copolymers, the Co-SC had different polymer chain ends and copolymers, and the Multi-SC had a mixture of various polymer chain ends and copolymers. Depending on the chain end structures, the melting points of the SCs changed in the case of Homo-SC and Co-SC, but Multi-SC showed two broad melting points at ~200 °C. We propose that these findings are the results of the various combinations of polymer–polymer interactions in the case of Multi-SC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2000;21:117–32.

    Article  CAS  Google Scholar 

  2. Pretula J, Slomkowski S, Penczek S. Polylactides—methods of synthesis and characterization. Adv Drug Del Rev. 2016;107:3–16.

    Article  CAS  Google Scholar 

  3. Wu C-S. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: characterization and biodegradability. Polym Degrad Stab. 2009;94:1076–84.

    Article  CAS  Google Scholar 

  4. Huang QY, Hiyama M, Kabe T, Kimura S, Iwata T. Enzymatic self-biodegradation of poly(L-lactic acid) films by embedded heat-treated and immobilized proteinase K. Biomacromolecules. 2020;21:3301–07.

    Article  CAS  PubMed  Google Scholar 

  5. Tsuji H, Tezuka Y. Alkaline and enzymatic degradation of L-lactide copolymers, 1 Amorphous—made films of L-lactide copolymers with D-lactide, glycolide and e-caprolactone. Macromol Biosci. 2005;5:135–48.

    Article  CAS  PubMed  Google Scholar 

  6. Tsuji H, Ishida T. Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. J Appl Polym Sci. 2003;87:1628–33.

    Article  CAS  Google Scholar 

  7. Ikada Y, Jamshidi K, Tsuji H, Hyon S-H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules. 1987;20:904–6.

    Article  CAS  Google Scholar 

  8. Tsuji H. Poly(lactide) stereocomlexes: formation, structure, properties, degradation, and applications. Macromol Biosci. 2005;5:569–97.

    Article  CAS  PubMed  Google Scholar 

  9. Tsuji H. Poly(lactic acid) stereocomplexes: a decade of progress. Adv Drug Del Rev. 2016;107:97–135.

    Article  CAS  Google Scholar 

  10. Ajiro H, Hsiao Y-J, Thi TH, Fujiwara T, Akashi M. A stereocomplex of poly(lactide)s with chain end modification: simultaneous resistances to melting and thermal decomposition. Chem Commun. 2012;48:8478–80.

    Article  CAS  Google Scholar 

  11. Ajiro H, Ito S, Kan K, Akashi M. Catechin-modified polylactide stereocomplex at chain end improved antibiobacterial property. Macromol Biosci. 2016;16:694–704.

    Article  CAS  PubMed  Google Scholar 

  12. Kan K, Akashi M, Ajiro H. Polylactides bearing vanillin at chain end provided dual dynamic interactions: stereocomplex formation and nanostructure control. Macromol Chem Phys. 2016;217:2679–85.

    Article  CAS  Google Scholar 

  13. Kumamoto N, Chantheaset N, Ajiro H. Polylactide stereocomplex bearing vinyl groups at chain ends prepared by allyl alcohol, malic acid, and citric acid. Polym Degrad Stab. 2020;180:109311.

    Article  CAS  Google Scholar 

  14. Chanthaset N, Ajiro H. Synthetic biodegradable polymers with chain end modification: polylactide, poly(butylene succinate), and poly(hydroxyalkanoate). Chem Lett. 2021;50:767–77.

    Article  CAS  Google Scholar 

  15. Fukushima K, Kimura Y. Stereocomlexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int. 2006;55:626–42.

    Article  CAS  Google Scholar 

  16. Isono T, Kondo Y, Otsuka I, Nishiyama Y, Borsali R, Kakuchi T, et al. Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(L-lactide) and poly(D-lactide) arms. Macromolecules. 2013;46:8509–18.

    Article  CAS  Google Scholar 

  17. Tsuji H, Tamai K, Kimura T, Kubota A, Tahahashi A, Kuzuya A, et al. Stereocomplex- and homo-crystallization of blends from 2-armed poly(L-lactide) and poly(D-lactide) with identical and opposite chain directional architectures and of 2-armed stereo diblock poly(lactide). Polymer. 2016;96:167–81.

    Article  CAS  Google Scholar 

  18. Fox TG, Garrett BS, Goode WE, Gratch S, Kincaid JF, Spell A, et al. Crystalline polymers of methyl methacrylate. J Am Chem Soc. 1958;80:1768–9.

    Article  CAS  Google Scholar 

  19. Jiang Z, Boyer MT, Sen A. Chiral and steric recognition in optically active, isotactic, alternating a-olefin-carbon monoxide copolymers. Effect on physical properties and chemical reactivity. J Am Chem Soc. 1995;117:7037–8.

    Article  CAS  Google Scholar 

  20. Marín R, Alla A, Muñoz-Guerra S. Stereocomplex formation from enantiomeric polyamides derived from Tartaric acid. Macromol Rapid Commun. 2006;27:1955–61.

    Article  Google Scholar 

  21. Tsuji H, Okumura A. Stereocomplex formation between enantiomeric substituted poly(lactide)s: blends of poly[(S)−2-hydroxybutyrate] and poly[(R)−2-hydroxybutyrate]. Macromolecules. 2009;42:7263–6.

    Article  CAS  Google Scholar 

  22. Nakano K, Hashimoto S, Nakamura M, Kamada T, Nozaki K. Stereocomoplex of poly(propylene carbonate): synthesis of stereogradient poly(propylnene carbonate) by regio- and enantioselective copolymerization of propylene oxide with carbon dioxide. Angew Chem Int Ed. 2011;50:4868–71.

    Article  CAS  Google Scholar 

  23. Slager J, Gladnikoff M, Domb AJ. Stereocomplexes, based on biodegradable polymers and bioactive macromolecules. Macromol Symp. 2001;175:105–15.

    Article  CAS  Google Scholar 

  24. Slager J, Domb AJ. Hetero-stereocomplexes of D-poly(lactic acid) and the LHRH analogue leuprolide. Application in controlled release. Eur J Pharm Biopharm. 2004;58:461–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ishii D, Kimishima M, Otake K, Iwata T. Enhanced crystallization of poly(lactide) stereocomplex by xylan propionate. Polym Int. 2016;65:339–45.

    Article  CAS  Google Scholar 

  26. Tsuji H, Matsuoka H. Stereoselective interaction between isotactic and optically active poly(lactic acid) and phenyl-substituted poly(lactic acid). Macromol Rapid Commun. 2008;29:1372–7.

    Article  CAS  Google Scholar 

  27. Tsuji H, Yamamoto S, Okumura A, Sugiura Y. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials. Biomacromolecules. 2010;11:252–8.

    Article  CAS  PubMed  Google Scholar 

  28. Tsuji H, Sobue T. Stereocomplexation of quaternary or ternary monomer units and dual stereocomplexation in enantiomeric binary and quaternary polymer blends of poly(2-hydroxybutanoic acid)s, poly(2-hydroxybutanoic acid-co-lactic acid)s, and poly(lactic acid)s. RSC Adv. 2015;5:83331–42.

    Article  CAS  Google Scholar 

  29. Tsuji H, Masaki N, Arakawa Y, Iguchi K, Sobue T. Ternary stereocomplex and hetero-stereocomplex crystallizability of substituted and unsubstituted poly(lactic acid)s. Cryst Growth Des. 2018;18:521–30.

    Article  CAS  Google Scholar 

  30. Shirahama H, Ichimaru A, Tsutsumi C, Nakayama Y, Yasuda H. Characteristics of the biodegradability and physical properties of stereocomplexes between poly(Llactide) and poly(D-lactide) copolymers. J Polym Sci A Polym Chem. 2005;43:438–54.

    Article  CAS  Google Scholar 

  31. Wanamaker CL, Bluemle MJ, Pitet LM, O’Leary LE, Tolman WB, Hillmyer MA. Consequences of polylactide stereochemistry on the properties of polylactide-polymenthide-polylactide thermoplastic elastomers. Biomacromolecules. 2009;10:2904–11.

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi K, Kanmuri S, Kimura Y, Masutani K. Synthesis and properties of stereo mixtures of enantiomeric block copolymers of polylactide and aliphatic polycarbonate. Polym Int. 2015;64:641–6.

    Article  CAS  Google Scholar 

  33. Fan X, Wang Z, Yuan D, Sun Y, Li Z, He C. Novel linear-dendritic-like amphiphilic copolymers: synthesis and self-assembly characteristics. Polym Chem. 2014;5:4069–75.

    Article  CAS  Google Scholar 

  34. Li Z, Yuan D, Fan X, Tan BH, He C. Poly(ethylene glycol) conjugated poly(lactide)-based polyelectrolytes: synthesis and formation of stable selfassemblies induced by stereocomplexation. Langmuir. 2015;31:2321–33.

    Article  CAS  PubMed  Google Scholar 

  35. Wolf FK, Hofmann AM, Frey H. Poly(isoglycerol methacrylate)-b-poly(D- or L-lactide) copolymers: a novel hydrophilicmethacrylate as building block for supramolecular aggregates. Macromolecules. 2010;43:3314–24.

    Article  CAS  Google Scholar 

  36. Uehara H, Karaki Y, Wada S, Yamanobe T. Stereocomplex crystallization of poly(lactic acid)s in block-copolymer phase separation. ACS Appl Mater Interfaces. 2010;2:2707–10.

    Article  CAS  PubMed  Google Scholar 

  37. Grancharov G, Coulembier O, Surin M, Lazzaroni R, Dubois P. Stereocomplexed materials based on poly(3-hexylthiophene)-b-poly(lactide) block copolymers: synthesis by organic catalysis, thermal properties, and microscopic morphology. Macromolecules. 2010;43:8957–64.

    Article  CAS  Google Scholar 

  38. Fujiwara T, Mukose T, Yamaoka T, Yamane H, Sakurai S, Kimura Y. Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA block copolymers. Macromol Biosci. 2001;1:204–8.

    Article  CAS  Google Scholar 

  39. Yang L, Ghzaoui AE, Li S. In vitro degradation behavior of poly(lactide)-poly(ethylene glycol) block copolymer micelles in aqueous solution. Int J Pharm. 2010;400:96–103.

    Article  CAS  PubMed  Google Scholar 

  40. Ajiro H, Kuroda A, Kan K, Akashi M. Stereocomplex film using triblock copolymers of polylactide and poly(ethylene glycol) retain paxlitacel on substrates by an aqueous inkjet system. Langmuir. 2015;31:10583–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kricheldorf HR, Rost S, Wutz C, Domb A. Stereocomplex of A-B-A triblock copolymers based on poly(L-lactide) and poly(D-lactide) A blocks. Macromolecules. 2005;38:7018–25.

    Article  CAS  Google Scholar 

  42. Liu R, He B, Li D, Lai Y, Tang JZ, Gu Z. Stabilization of pH-sensitive mPEG-PH-PLA nanoparticles by stereocomplexation between enantiomeric polylactides. Macromol Rapid Commun. 2012;33:1061–6.

    Article  CAS  PubMed  Google Scholar 

  43. Geschwind J, Rathi S, Tonhauser C, Schomer M, Hsu SL, Coughlin EB, et al. Stereocomplex formation in polylactide multiarm stars and comb copolymers with linear and hyperbranched mutifunctional PEG. Macromol Chem Phys. 2013;214:1434–44.

    Article  CAS  Google Scholar 

  44. Zhou D, Shao J, Sun J, Bian X, Xiang S, Li G, et al. Effect of the different architectures and molecular weights on stereocomplex in enantiomeric polylactides-b-MPEG block copolymers. Polymer. 2017;123:49–54.

    Article  CAS  Google Scholar 

  45. Xie Q, Han L, Zhou J, Shan G, Bao Y, Pan P. Homocrystalline mesophase formation and mutistage structural transitions in stereocomplexable racemic blends of block copolymers. Polymer. 2020;189:122180.

    Article  CAS  Google Scholar 

  46. Liu Y, Shao J, Sun J, Bian X, Feng L, Xiang S, et al. Improved mechanical thermal properties of PLLA by solvent blending with PDLA-b-PEG-b-PDLA. Polym Degrad Stab. 2014;101:10–7.

    Article  CAS  Google Scholar 

  47. Tsuji H, Kikkawa K, Ozawa R, Arakawa Y. Simultaneous stereocomplex cocrystallization from coexisting two types of stereocomplexationable poly(lactide) systems. CrystEngCommn. 2019;21:3158–69.

    Article  CAS  Google Scholar 

  48. Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y. Infrared spectroscopic study of CH3…O=C interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules. 2005;38:1822–8.

    Article  CAS  Google Scholar 

  49. Sarasua JR, Prud’homme RE, Wisniewski M, Borgne AL, Spassky N. Crystallization and melting behavior of polylactides. Macromolecules. 1998;31:3895–905.

    Article  CAS  Google Scholar 

  50. Tsuji H, Horii F, Nakagawa M, Ikada Y, Odani H, Kitamaru R. Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectopy. Macromolecules. 1992;25:4114–8.

    Article  CAS  Google Scholar 

  51. Xu R, Xie J, Lei C. Influence of melt-draw ratio on the crystalline behaviour of a polylactic acid cast film with a chi structure. RSC Adv. 2017;7:39914.

    Article  CAS  Google Scholar 

  52. Lorenzo MLD, Androsch R. Influence of α’-/α-crystal polymorphism on properties of poly(L-lactic acid). Polym Int. 2019;68:320–34.

    Article  Google Scholar 

  53. Hsieh YT, Nozaki S, Kido M, Kamitani K, Kojio K, Takahara A. Crystal polymorphoism of polylactide and its composites by X-ray diffraction study. Polym J. 2020;52:755–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI: Grant-in-Aid for Scientific Research in Innovative Areas (JP20H05223), Grant-in-Aid for Scientific Research (B) (JP20H02799), and Fostering Joint International Research (B) (JP19KK0277). This study was also partly supported by AMED under Grant Number JP20lm0203014.

Author information

Authors and Affiliations

Authors

Contributions

Jaeyeong Choi and Hiroharu Ajiro equally contributed to this work.

Corresponding authors

Correspondence to Jaeyeong Choi or Hiroharu Ajiro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Ajiro, H. Preparation and analyses of stereocomplexes of a polylactide homopolymer and copolymer with poly(ethylene glycol) and urethane capping. Polym J 54, 151–160 (2022). https://doi.org/10.1038/s41428-021-00564-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00564-1

Search

Quick links