Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Comparative study on the effects of incorporating poly(d,l-lactide) and solvent on stereocomplex crystallization and homocrystallization in unconstrained and constrained poly(l-lactide)/poly(d-lactide) systems

Abstract

The effects of incorporating poly(d,l-lactide) (PDLLA) and solvent on the stereocomplex (SC) crystallization and homocrystallization of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) chains were explored using linear one-armed PLLA (1-L)/PDLA (1-D) and linear one-armed PDLLA (1-DL) as an unconstrained system and using branched four-armed PLLA-b-PDLA (4-L-D) and linear one-armed 1-DL as a constrained system. In the unconstrained 1-L/1-D/1-DL blends, both SC crystallites and homocrystallites formed in the absence of PDLLA or solvent, whereas only SC crystallites formed in the presence of PDLLA (75 and 50 wt.% at crystallization temperatures of 100 and 140 °C, respectively) or solvent. The SC crystallinity and total crystallinity increased, and the homocrystallinity decreased due to the presence of PDLLA and solvent. In the constrained 4-L-D/1-DL blends, SC crystallites formed without homocrystallites, even in the absence of PDLLA and solvent. SC crystallinity slightly increased due to the presence of PDLLA; however, the presence of both PDLLA and solvent somewhat decreased the SC crystallinity. In summary, the dilution effects of PDLLA and solvent enhanced SC crystallization and suppressed homocrystallization, with the exception of the constrained 4-L-D/1-DL blends in the presence of both PDLLA and solvent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vert M, Feijen J, Albertsson A-C, Scott G, Chiellini E, Eds. Biodegradable Polymers and Plastics. Cambridge: Royal Society of Chemistry; 1992.

    Google Scholar 

  2. Mobley DP, Ed. Plastics from Microbes. New York: Hanser Publishers; 1994.

    Google Scholar 

  3. Vert M, Schwarch G, Coudane J. Present and Future of PLA Polymers. J Macromol Sci Pure Appl Chem. 1995;A32:787–96.

    Article  CAS  Google Scholar 

  4. Domb AJ, Kost J, Wieseman DM, Eds. Handbook of Biodegradable Polymers. 7. Amsterdam (The Netherlands): Harwood Academic Publishers; 1997. Drug Targeting and Delivery.

    Google Scholar 

  5. Kaplan DL, Ed. Biopolymers from Renewable Resources. Berlin (Germany): Springer; 1998.

    Google Scholar 

  6. Garlotta D. A Literature Review of Poly(Lactic Acid). J Polym Environ. 2001;9:63–84.

    Article  CAS  Google Scholar 

  7. Södergård A, Stolt M. Properties of Lactic Acid Based Polymers and Their Correlation with Composition. Prog Polym Sci. 2002;27:1123–63.

    Article  Google Scholar 

  8. Albertsson A-C, Ed. Degradable Aliphatic Polyesters. 157. Berlin (Germany): Springer; 2002. Advances in Polymer Science.

    Google Scholar 

  9. Doi Y, Steinbüchel A, Eds. Polyesters I, II, III (Biopolymers, Vol. 3a, 3b, 4). Weinheim (Germany): Wiley-VCH; 2002.

    Google Scholar 

  10. Tsuji H, Kabasi S, Ed. Poly(Lactic Acid). Bio-Based Plastics: Materials and Applications. Chapter 8. Chichester (UK): Wiley & Sons, Ltd; 2014. p. 171–239.

    Google Scholar 

  11. Auras R, Lim L-T, Selke SEM, Tsuji H, Eds. Poly(lactic acid): Synthesis, Structures, Properties, Processing, Applications, and End of Life (Wiley Series on Polymer Engineering and Technology). 2nd edition. New Jersey: John Wiley & Sons, Inc; 2022.

    Google Scholar 

  12. Slager J, Domb AJ. Biopolymer Stereocomplexes. Adv Drug Deliv Rev. 2003;55:549–83.

    Article  CAS  Google Scholar 

  13. Tsuji H. Poly(lactic acid) Stereocomplexes: A Progress of Decade. Adv Drug Deliv Rev. 2016;107:97–135.

    Article  CAS  Google Scholar 

  14. Fukushima K, Kimura Y. Stereocomplexed Polylactides (Neo-PLA) as High-Performance Bio-Based Polymers: Their Formation, Properties, and Application. Polym Int. 2006;55:626–42.

    Article  CAS  Google Scholar 

  15. Pan P, Inoue Y. Polymorphism and Isomorphism in Biodegradable Polyesters. Prog Polym Sci. 2009;34:605–40.

    Article  CAS  Google Scholar 

  16. Saravanan M, Domb AJ. A Contemporary Review on–Polymer Stereocomplexes and Its Biomedical Application. Eur J Nanomed. 2013;5:81–86.

    Article  CAS  Google Scholar 

  17. Jing Y, Quan C, Jiang Q, Zhang C, Chao Z. A Mini-Review on the Study of Functional Biomaterials Based on Poly(lactic acid) Stereocomplex. Polym Rev. 2016;56:262–86.

    Article  CAS  Google Scholar 

  18. Tan BH, Muiruri JK, Li Z, He C. Recent Progress in Using Stereocomplexation for Enhancement of Thermal and Mechanical Property of Polylactide. ACS Sustain Chem Eng. 2016;4:5370–91.

    Article  CAS  Google Scholar 

  19. Bai H, Deng S, Bai D, Zhang Q, Fu Q. Recent Advances in Processing of Stereocomplex-Type Polylactide. Macromol Rapid Commun. 2017;38:1700454.

    Article  Google Scholar 

  20. Xie Q, Yu C, Pan, P. Stereocomplex crystallization of polymers with complementary configurations Crystallization in Multiphase Polymer Systems. Amsterdam, the Netherlands: Elsevier Inc.; 2018, 535–73.

  21. Bandelli D, Alex J, Weber C, Schubert US. Polyester Stereocomplexes Beyond PLA: Could Synthetic Opportunities Revolutionize Established Material Blending? Macromol Rapid Commun. 2020;41:1900560.

    Article  CAS  Google Scholar 

  22. Liu J, Qi X, Feng Q, Lan Q. Suppression of Phase Separation for Exclusive Stereocomplex Crystallization of a High-Molecular-Weight Racemic Poly(L‑lactide)/Poly(D‑lactide) Blend from the Glassy State. Macromolecules. 2020;53:3493–3503.

    Article  CAS  Google Scholar 

  23. Sun C, Zheng Y, Xu S, Ni L, Li X, Shan G, Bao Y, Pan P. Role of Chain Entanglements in the Stereocomplex Crystallization between Poly(lactic acid) Enantiomers. ACS Macro Lett. 2021;10:1023–8.

    Article  CAS  Google Scholar 

  24. Cui L, Wang Y, Zhang R. Design high heat-resistant stereocomplex poly(lactide acid) by cross-linking and plasticizing. Adv Polym Tech. 2018;37:2429–35.

    Article  CAS  Google Scholar 

  25. Sun X-R, Cao Z-Q, Bao R-Y, Liu Z, Xie B-H, Yang M-B, Yang W. A Green and Facile Melt Approach for Hierarchically Porous Polylactide Monoliths Based on Stereocomplex Crystallite Network. ACS Sustain Chem Eng. 2017;5:8334–43.

    Article  CAS  Google Scholar 

  26. Bao R-Y, Yang W, Wei X-F, Xie B-H, Yang M-B. Enhanced Formation of Stereocomplex Crystallites of High Molecular Weight Poly(L-lactide)/Poly(D-lactide) Blends from Melt by Using Poly(ethylene glycol). ACS Sustain Chem Eng. 2014;2:2301–9.

    Article  CAS  Google Scholar 

  27. Pakkethati K, Baimark Y. Plasticization of biodegradable stereocomplex polylactides with poly(propylene glycol). Polym Sci. Ser A 2017;59:124–32.

    CAS  Google Scholar 

  28. Bao R-Y, Yang W, Liu Z-Y, Xie B-H, Yang M-B. Polymorphism of a high-molecular-weight racemic poly(L-lactide)/poly(D-lactide) blend: effect of melt blending with poly(methyl methacrylate). RSC Adv. 2015;5:19058–66.

    Article  CAS  Google Scholar 

  29. Samuel C, Cayuela J, Barakat I, Müller AJ, Raquez J-M, Dubois P. Stereocomplexation of Polylactide Enhanced by Poly(methyl methacrylate): Improved Processability and Thermomechanical Properties of Stereocomplexable Polylactide-Based Materials. ACS Appl Mater Interfaces. 2013;5:11797–807.

    Article  CAS  Google Scholar 

  30. Iguchi Y, Akasaka S, Asai S. Formation of PLA stereocomplex crystals during melt-blending of asymmetric PLLA/PDLA/PMMA blends of varying miscibility. Polym J. 2020;52:225–35.

    Article  CAS  Google Scholar 

  31. Baimark Y, Srisuwan Y. Preparation of Biodegradable Stereocomplex Polylactide Films by Compression Molding Using Poly(ε-caprolactone-co-L-lactide) Copolyester as a Film Former. Asian J Sci Res. 2018;11:364–75.

    Article  CAS  Google Scholar 

  32. Srisuwan Y, Baimark Y. Improvement in stereocomplexation of poly(L-lactide)/poly(D-lactide) blended bioplastics by melt blending with epoxidized natural rubber. Int J Appl Eng Res. 2017;12:15086–90.

    Google Scholar 

  33. Deng S, Bai H, Liu Z, Zhang Q, Fu Q. Toward Supertough and Heat-Resistant Stereocomplex-Type Polylactide/Elastomer Blends with Impressive Melt Stability via in Situ Formation of Graft Copolymer during One-Pot Reactive Melt Blending. Macromolecules 2019;52:1718–30.

    Article  CAS  Google Scholar 

  34. Fukushima K, Chang Y-H, Kimura Y. Enhanced Stereocomplex Formation of Poly(L-lactic acid) and Poly(D-lactic acid) in the Presence of Stereoblock Poly(lactic acid). Macromol Biosci. 2007;7:829–35.

    Article  CAS  Google Scholar 

  35. Li Y, Han C, Zhang X, Dong Q, Dong L. Effects of molten poly(D,L-lactide) on nonisothermal crystallization in stereocomplex of poly(L-lactide) with poly(D-lactide). Thermochim Acta. 2013;573:193–9.

    Article  CAS  Google Scholar 

  36. Li Y, Han C, Bian Y, Dong Q, Zhao H, Zhang X, Xu M, Dong L. Miscibility, thermal properties and polymorphism of stereocomplexation of high-molecular-weight polylactide/poly(D,L-lactide) blends. Thermochim Acta. 2014;580:53–62.

    Article  CAS  Google Scholar 

  37. Ju Y-L, Li X-L, Diao X-Y, Bai H-W, Zhang Q, Fu Q. Mixing of Racemic Poly(L-lactide)/Poly(D-lactide) Blend with Miscible Poly(D,L-lactide): Toward All Stereocomplex-type Polylactide with Strikingly Enhanced SC Crystallizability. Chin J Polym Sci. 2021;39:1470–80.

    Article  CAS  Google Scholar 

  38. Tsuji H, Iguchi K, Arakawa Y. Stereocomplex- and homo-crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, enantiomeric Poly(L-lactide)-b-Poly(DL-lactide) and Poly(D-lactide)-b-Poly(DL-lactide). Polymer 2021;213:123226.

    Article  CAS  Google Scholar 

  39. Tsuji H, Ikada Y. Blends of isotactic and atactic poly(lactide)s: 2. Molecular-weight effects of atactic component on crystallization and morphology of equimolar blends from the melt. Polymer. 1996;37:595–602.

    Article  CAS  Google Scholar 

  40. Bouapao L, Tsuji H, Tashiro K, Zhang J, Hanesaka M. Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s. Polymer. 2009;50:4007–17.

    Article  CAS  Google Scholar 

  41. Isono T, Kondo Y, Otsuka I, Nishiyama Y, Borsali R, Kakuchi T, Satoh T. Synthesis and Stereocomplex Formation of Star-Shaped Stereoblock Polylactides Consisting of Poly(L-lactide) and Poly(D-lactide) Arms. Macromolecules. 2013;46:8509–18.

    Article  CAS  Google Scholar 

  42. Tsuji H, Matsumura N. Stereocomplex Crystallization of Star-Shaped 4-Armed Equimolar Stereo Diblock Poly(lactide)s with Different Molecular Weights: Isothermal Crystallization from the Melt. Macromol Chem Phys. 2016;217:1547–1557.

    Article  CAS  Google Scholar 

  43. Tsuji H, Sato S, Masaki N, Arakawa Y, Kuzuya A, Ohya Y. Stereocomplex crystallization, homocrystallization, and polymorphism of enantiomeric copolyesteramides poly(lactic acid-co-alanine)s from the melts. Polym Crystallization. 2020;3:e10094.

    CAS  Google Scholar 

  44. Tsuji H, Ohsada K, Arakawa Y. Stereocomplex- and homo-crystallization behavior, polymorphism, and thermal properties of enantiomeric random copolymers of L- and D-lactic acids from the melt. Polymer. 2021;228:123954.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by JSPS KAKENHI (Grant Number 16K05912) and the research grant from The Hibi Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

HT: Conceptualization, methodology, supervision, project administration, funding acquisition, validation, formal analysis, data curation, visualization, original draft preparation, reviewing and editing. SN: Resources, investigation, formal analysis, data curation, reviewing and editing. NT: Resources, investigation, formal analysis, data curation, reviewing and editing. YA: Investigation, formal analysis, data curation, reviewing and editing, supervision (resources and investigation).

Corresponding author

Correspondence to Hideto Tsuji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, H., Nogata, S., Tsukamoto, N. et al. Comparative study on the effects of incorporating poly(d,l-lactide) and solvent on stereocomplex crystallization and homocrystallization in unconstrained and constrained poly(l-lactide)/poly(d-lactide) systems. Polym J 55, 75–84 (2023). https://doi.org/10.1038/s41428-022-00701-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00701-4

Search

Quick links