Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Synthetic innovations for cyclic polymers

Abstract

The relationship between the primary structures of polymers and their properties has long been recognized as an important research subject for polymer chemists. Advanced chemical procedures allowing precise control of the structure also enable us to examine the topological effects on polymer properties. Cyclic polymers possess unique characteristics due to the absence of polymer termini, showing different bulk and solution properties from their corresponding linear counterparts, i.e., smaller hydrodynamic volume and radius of gyration (Rg) [1], lower intrinsic viscosity [2], high critical solution temperature [2], accelerated rate of crystallization [3], and high refractive indices [4]. To make progress in this research field, innovative synthetic procedures are essential. The synthetic strategy for cyclic polymers has two typical pathways: the ring closure of functional linear polymers and ring expansion polymerization using cyclic monomers, an initiator, or a catalyst. This review describes the recent synthetic evolution of cyclic polymers, focusing on our new strategy: ring closing without highly dilute conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lonsdale DE, Bell CA, Monteiro MJ. Strategy for rapid and high-purity monocyclic polymers by CuAAC “click” reactions. Macromolecules. 2010;43:3331–9.

    Article  CAS  Google Scholar 

  2. Qiu XP, Tanaka F, Winnik FM. Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide)s in aqueous solution. Macromolecules. 2007;40:7069–71.

    Article  CAS  Google Scholar 

  3. Shin EJ, Jeong W, Brown HA, Koo BJ, Hedrick JL, Waymouth RM. Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(epsilon-caprolactone)s. Macromolecules. 2011;44:2773–9.

    Article  CAS  Google Scholar 

  4. Bannister DJ, Semlyen JA. Studies of cyclic and linear poly(dimethyl siloxanes): 6. Effect of heat. Polymer. 1981;22:377–81.

    Article  CAS  Google Scholar 

  5. Romio M, Trachsel L, Morgese G, Ramakrishna SN, Spencer ND, Benetti EM. Topological polymer chemistry enters materials science: expanding the applicability of cyclic polymers. ACS Macro Lett. 2020;9:1024–33.

    Article  CAS  Google Scholar 

  6. Geiser D, Hocker H. Synthesis and investigation of macrocyclic polystyrene. Macromolecules. 1980;13:653–6.

    Article  CAS  Google Scholar 

  7. Hild G, Kohler A, Rempp P. Synthesis of ring-shaped macromolecules. Eur Polym J. 1980;16:525–7.

    Article  CAS  Google Scholar 

  8. Schappacher M, Deffieux A. Synthesis of macrocyclic poly(2-chloroethyl vinyl ether)s. Makromol Chem Rapid Commun. 1991;12:447–53.

    Article  CAS  Google Scholar 

  9. Schappacher M, Deffieux A. Alpha-acetal-omega-bis(hydroxymethyl) heterodifunctional polystyrene: synthesis, characterization, and investigation of intramolecular end-to-end ring closure. Macromolecules. 2001;34:5827–32.

    Article  CAS  Google Scholar 

  10. Laurent BA, Grayson SM. An efficient route to well-defined macrocyclic polymers via “click” cyclization. J Am Chem Soc. 2006;128:4238–9.

    Article  CAS  PubMed  Google Scholar 

  11. Xu J, Ye J, Liu SY. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules. 2007;40:9103–10.

    Article  CAS  Google Scholar 

  12. Chen FG, Liu GM, Zhang GZ. Synthesis of cyclic polyelectrolyte via direct copper(I)-catalyzed click cyclization. J Polym Sci A: Polym Chem. 2012;50:831–5.

    Article  CAS  Google Scholar 

  13. Ren JM, Satoh K, Goh TG, Blencowe A, Nagai K, Ishitake K, et al. Stereospecific cyclic poly(methyl methacrylate) and its topology-guided hierarchically controlled supramolecular assemblies. Angew Chem Int Ed. 2014;53:459–64.

    Article  CAS  Google Scholar 

  14. Stamenovic MM, Espeel P, Baba E, Yamamoto T, Tezuka Y, Du Prez FE. Straightforward synthesis of functionalized cyclic polymers in high yield via RAFT and thiolactone-disulfide chemistry. Polym Chem. 2013;4:184–93.

    Article  CAS  Google Scholar 

  15. McGraw ML, Chen EYX. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules. 2020;53:6102–22.

    Article  CAS  Google Scholar 

  16. Haque FM, Grayson SM. The synthesis, properties and potential applications of cyclic polymers. Nat Chem. 2020;12:433–44.

    Article  CAS  PubMed  Google Scholar 

  17. Arduengo AJ, Harlow RL, Kline M. A stable crystalline carbene. J Am Chem Soc. 1991;113:361–3.

    Article  CAS  Google Scholar 

  18. Matsuoka S, Ota Y, Washio A, Katada A, Ichioka K, Takagi T, et al. Organocatalytic tail-to-tail dimerization of olefin: umpolung of methyl methacrylate mediated by N-heterocyclic carbene. Org Lett. 2011;13:3722–5.

    Article  CAS  PubMed  Google Scholar 

  19. Kato T, Ota Y, Matsuoka S, Takagi K, Suzuki M. Experimental mechanistic studies of the tail-to-tail dimerization of methyl methacrylate catalyzed by N-heterocyclic carbene. J Org Chem. 2013;78:8739–47.

    Article  CAS  PubMed  Google Scholar 

  20. Biju AT, Padmanaban M, Wurz NE, Glorius F. N-heterocyclic carbene catalyzed umpolung of michael acceptors for intermolecular reactions. Angew Chem Int Ed 2011;50:8412–5.

    Article  CAS  Google Scholar 

  21. Zhang Y, Schmitt M, Falivene L, Caporaso L, Cavallo L, Chen EY-X. Organocatalytic conjugate-addition polymerization of llinear and cyclic acrylic monomers by N-heterocyclic carbenes: mechanisms of chain initiation, propagation, and termination. J Am Chem Soc. 2013;135:17925–41.

    Article  CAS  PubMed  Google Scholar 

  22. Hosoi Y, Takasu A, Matsuoka S, Hayashi M. N-heterocyclic carbene initiated anionic polymerization of (E,E)-methyl sorbate and subsequent ring-closing to cyclic poly(alkyl sorbate). J Am Chem Soc. 2017;139:15005–12.

    Article  CAS  PubMed  Google Scholar 

  23. Maruoka K, Itoh T, Sakurai M, Nonoshita K, Yamamoto H. Amphiphilic reactions by means of exceptionally bulky organoaluminum reagents. Rational approach for obtaining unusual equatorial, anti-Cram, and 1,4 selectivity in carbonyl alkylation. J Am Chem Soc. 1998;110:3588–97.

    Article  Google Scholar 

  24. Hirabayashi T, Yamamoto H, Kojima T, Takasu A, Inai Y. Synthesis of head-to-tail and head-to-head poly(propylene-alt-methyl methacrylate)s via anionic polymerization of methyl 2,4-alkadienoates. Macromolecules. 2000;33:4304–6.

    Article  CAS  Google Scholar 

  25. Takasu A, Ishii M, Inai Y, Hirabayashi T. Highly threo diastereoselective anionic polymerization of (E,E)-methyl sorbate catalyzed by a bulky organoaluminum Lewis acid. Macromolecules. 2001;34:6548–50.

    Article  CAS  Google Scholar 

  26. Takasu A, Ishii M, Inai Y, Hirabayashi T, Inomata K. Threo-disyndiotactic polymerization of (E,E)-alkyl sorbates assisted by bulky organoaluminum Lewis acid via “alternating turning over polymerization (ATOP)” mechanism. Macromolecules. 2003;36:7055–64.

    Article  CAS  Google Scholar 

  27. Oga Y, Hosoi Y, Takasu A. Synthesis of cyclic poly(methyl methacrylate) via N-heterocyclic carbene (NHC) initiated-anionic polymerization and subsequent ring-closing without need of highly dilute conditions. Polymer. 2020;186:122019.

    Article  CAS  Google Scholar 

  28. Naruse K, Takasu A, Higuchi M. Direct observation of a cyclic vinyl polymer prepared by anionic polymerization using N-heterocyclic carbene and subsequent ring-closure without highly diluted conditions. Macromol Chem Phys. 2020;221:202000004.

    Article  Google Scholar 

  29. Muramatsu Y, Oga Y, Takasu A, Higuchi M. Direct observation of cyclic poly(N-substituted maleimide)s with broad size distributions synthesized by anionic polymerization using an N-heterocyclic carbene and successive ring closure without high dilutions. Polym J. 2020;52:1253–61.

    Article  CAS  Google Scholar 

  30. Muramatsu Y, Takasu A, Higuchi M, Hayashi M. Direct observation of the Formation of a cyclic poly(alkyl sorbate) via chain-growth polymerization by an N-heterocyclic carbene initiator and ring-closing without extreme dilution. J Poymer Sci. 2020;52:2936–2942.

    Google Scholar 

  31. McGraw ML, Clarke RW, Chen EY-X. Synchronous control of chain length/sequence/topology for precision synthesis of cyclic block copolymers from monomer mixtures,. J Am Chem Soc. 2021;143:3318–22.

    Article  CAS  PubMed  Google Scholar 

  32. McGraw ML, Clarke RW, Chen EY-X. Compounded sequence control in polymerization of one-pot mixtures of highly reactive acrylates by differentiating Lewis pairs. J Am Chem Soc. 2020;142:5969–73.

    Article  PubMed  Google Scholar 

  33. Bielawski CW, Benitez D, Grubbs RH. An “endless” route to cyclic polymers. Science. 2002;297:2041–4.

    Article  CAS  PubMed  Google Scholar 

  34. Boydston AJ, Xia Y, Kornfield JA, Gorodetskaya IA, Grubbs RH. Cyclic ruthenium-alkylidene catalysts for ring-expansion metathesis polymerization. J Am Chem Soc. 2008;130:12775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niu W, Gonsales SA, Kubo T, Bentz KC, Pal D, Savin DA, et al. Polypropylene: now available without chain ends. Chem. 2019;5:237–44.

    Article  CAS  Google Scholar 

  36. Kammiyada H, Ouchi M, Sawamoto M. A study on physical properties of cyclic poly(vinyl ether)s synthesized via ring-expansion cationic polymerization. Macromolecules. 2017;50:841–8.

    Article  CAS  Google Scholar 

  37. Kubota H, Yoshida S, Ouchi M. Ring-expansion cationic cyclopolymerization for construction of cyclic cyclopolymers. Polym Chem. 2020;11:3964–71.

    Article  CAS  Google Scholar 

  38. Jeong W, Hedrick JL, Waymouth RM. Organic spirocyclic initiators for the ring-expansion polymerization of beta-lactones. J Am Chem Soc. 2007;129:8414–5.

    Article  CAS  PubMed  Google Scholar 

  39. Kamber NE, Jeong W, Gonzalez S, Hedrick JL, Waymouth RM. N-heterocyclic carbenes for the organocatalytic ring-Opening polymerization of epsilon-caprolactone. Macromolecules. 2009;42:1634–9.

    Article  CAS  Google Scholar 

  40. Culkin DA, Jeong W, Csihony S, Gomez ED, Balsara NP, Hedrick JL, et al. Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts. Angew Chem Int Ed. 2007;46:2627–30.

    Article  CAS  Google Scholar 

  41. Zhang Y, Liu R, Jin H, Song W, Augustine R, Kim I. Straightforward access to linear and cyclic polypeptides. Commun Chem. 2018;40:1–7.

    Google Scholar 

  42. Guo L, Zhang DH. Cyclic poly(alpha-peptoid)s and their block copolymers from N-heterocyclic carbene-mediated ring-opening polymerizations of N-substituted N-carboxylanhydrides. J Am Chem Soc. 2009;131:18072–4.

    Article  CAS  PubMed  Google Scholar 

  43. Hong M, Chen EY-X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat Chem. 2016;8:42–49.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu J, Watson EM, Tang J, Chen EY-X. A synthetic polymer system with repeatable chemical recyclability. Science. 2018;27:398–403.

    Article  Google Scholar 

  45. Zhu J, Chen EY-X. Living coordination polymerization of a six-five bicyclic lactone to produce completely recyclable polyester. Angew Chem Int Ed. 2020;57:12558–62.

    Article  Google Scholar 

  46. Wang Y, Xu T. Topology-controlled ring-opening polymerization of o-carboxyanhydride. Macromoleculs. 2020;53:8829–36.

    Article  CAS  Google Scholar 

  47. Tsurumi N, Takashima R, Aoki D, Kuwata S, Otsuka H. A strategy toward cyclic topologies based on the dynamic behavior of a bis(hindered amino)disulfide linker. Angew Chem Int Ed. 2020;59:4269–73.

    Article  CAS  Google Scholar 

  48. Takashima R, Aoki D, Otsuka H. Rational entry to cyclic polymers via thermally induced radical ring-expansion polymerization of macrocycles with one bis(hindered amino)disulfide linkage. Macromolecules. 2020;53:4670–7.

    Article  CAS  Google Scholar 

  49. Yamamoto T, Tezuka Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polym Chem. 2011;2:1930–41.

    Article  CAS  Google Scholar 

  50. Chichak KS, Cantrill SJ, Pease AR, Chiu S-H, Cave GWV, Atwood JL, et al. Molecular borromean rings. Science. 2004;304:1308–12.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang WB, Sun F, Tirrell DA, Arnold FH. Controlling macromolecular topology with genetically encoded spytag-spycatcher chemistry. J Am Chem Soc. 2013;135:13988–97.

    Article  CAS  PubMed  Google Scholar 

  52. Clark PG, Guidry EN, Chan WY, Steinmetz WE, Grubbs RH. Synthesis of a molecular charm bracelet via click cyclization and olefin metathesis clipping. J Am Chem Soc. 2010;132:3405–12.

    Article  CAS  PubMed  Google Scholar 

  53. Ishikawa K, Yamamoto T, Asakawa M, Tezuka Y. Effective synthesis of polymer catenanes by cooperative electrostatic/hydrogen-bonding self-assembly and covalent fixation. Macromolecules. 2010;43:168–76.

    Article  CAS  Google Scholar 

  54. Tezuka Y, editor. Topological polymer chemistry: progress of cyclic polymers in syntheses, properties and functions. Singapore: World Scientific; 2013.

  55. Oike H, Imaizumi H, Mouri T, Yoshioka Y, Uchibori A, Tezuka Y. Designing unusual polymer topologies by electrostatic self-assembly and covalent fixation. J Am Chem Soc. 2000;122:9592–9.

    Article  CAS  Google Scholar 

  56. Oike H, Kobayashi S, Mouri T, Tezuka Y. Kyklo-telechelics: Tailored synthesis of cyclic poly(tetrahydrofuran)s having two functional groups at opposite positions. Macromolecules. 2001;34:2742–4.

    Article  CAS  Google Scholar 

  57. Sugai N, Heguri H, Ohta K, Meng Q, Yamamoto T, Tezuka Y. Effective click construction of bridged- and spiro-multicyclic polymer topologies with tailored cyclic prepolymers (kyklo-Telechelics). J Am Chem Soc. 2010;132:14790–802.

    Article  CAS  PubMed  Google Scholar 

  58. Tezuka Y, Fujiyama K. Construction of polymeric delta-graph: a doubly fused tricyclic topology. J Am Chem Soc. 2005;127:6266–70.

    Article  CAS  PubMed  Google Scholar 

  59. Sugai N, Heguri H, Yamamoto T, Tezuka Y. A programmed polymer folding: click and clip construction of doubly fused tricyclic and triply fused tetracyclic polymer topologies. J Am Chem Soc. 2011;133:19694–7.

    Article  CAS  PubMed  Google Scholar 

  60. Chen CT, Gantzel P, Siegel JS, Baldridge KK, English RB, Ho DM. Synthesis and structure of the nanodimensional multicyclophane “Kuratowski cyclophane”, an achiral molecule with nonplanar K-3,K-3 topology. Angew Chem Int Ed. 1995;34:2657–60.

    Article  CAS  Google Scholar 

  61. Craik DJ. Chemistry - Seamless proteins tie up their loose ends. Science. 2006;311:1563–4. 1125248

    Article  PubMed  Google Scholar 

  62. Alon A, Grossman I, Gat Y, Kodali VK, DiMaio F, Mehlman T, et al. Fass D. The dynamic disulphide relay of quiescin sulphydryl oxidase. Nature. 2012;488:414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Araujo AD, Mobli M, King GF, Alewood PF. Cyclization of peptides by using selenolanthionine bridges. Angew Chem Int Ed. 2012;51:10298–302.

    Article  Google Scholar 

  64. Suzuki T, Yamamoto T, Tezuka Y. Constructing a macromolecular K-3,K-3 graph through electrostatic self-assembly and covalent fixation with a dendritic polymer precursor. J Am Chem Soc. 2014;136:10148–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.T. is grateful for financial support from the Ministry of Education, Science and Culture of Japan (Grant-in-Aid for Development Scientific Research 18K19112 and 20H02786). Y.M. also acknowledges Dr. Mikihiro Hayashi and Prof. Masahiro Higuchi for their fruitful discussions and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Takasu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muramatsu, Y., Takasu, A. Synthetic innovations for cyclic polymers. Polym J 54, 121–132 (2022). https://doi.org/10.1038/s41428-021-00560-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00560-5

This article is cited by

Search

Quick links