Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functionalized organic nanotubes with highly tunable crosslinking site density for mechanical enhancement and pH-controlled drug release of nanocomposite hydrogels

Abstract

Organic nanotubes (ONTs) have attracted growing attention in biomedical applications because of their unique inner and outer nanospaces. Here, ONTs were functionalized and hybridized with poly(ethylene glycol) (PEG) to construct nanocomposite hydrogels, with the aim of enhancing their mechanical strength and controlling their release properties. These nanoengineered hydrogels have 4-fold greater mechanical stiffness than unreinforced hydrogels and show a more stable network. The effects of ONT concentration and crosslinkable site density on the hydrogel mechanical properties were systematically assessed. Moreover, the incorporation of ONTs enabled simple and effective post-loading of the model drug, as well as a sustained drug release profile from the hydrogels. These results provide a novel method to generate mechanically enhanced nanocomposite hydrogels with improved drug delivery in an easy, efficient and tunable manner, and the obtained nanocomposite hydrogels may have potential applications in drug delivery and other related bioapplications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem Rev. 2020;120:7642–707.

    Article  CAS  Google Scholar 

  2. Mandal A, Clegg JR, Anselmo AC, Mitragotri S. Hydrogels in the clinic. Bioeng Transl Med. 2020;5:e10158.

    Article  CAS  Google Scholar 

  3. Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6:e03719.

    Article  CAS  Google Scholar 

  4. Cai P, Chen X. Hydrogels for artificial vitreous: from prolonged substitution to elicited regeneration. ACS Mater Lett. 2019;1:285–9.

    Article  CAS  Google Scholar 

  5. Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111:441–53.

    Article  CAS  Google Scholar 

  6. Li J, Weber E, Guth-Gundel S, Schuleit M, Kuttler A, Halleux C. et al. Tough composite hydrogels with high loading and local release of biological drugs. Adv Healthc Mater. 2018;7:1701393.

    Article  Google Scholar 

  7. Kerativitayanan P, Carrow JK, Gaharwar AK. Nanomaterials for engineering stem cell responses. Adv Healthc Mater. 2015;4:1600–27.

    Article  CAS  Google Scholar 

  8. Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–90.

    Article  CAS  Google Scholar 

  9. Gao J, Tang C, Elsawy MA, Smith AM, Miller AF, Saiani A. Controlling self-assembling peptide hydrogel properties through network topology. Biomacromolecules. 2017;18:826–34.

    Article  CAS  Google Scholar 

  10. Yuan Y, Chesnutt B, Utturkar G, Haggard W, Yang Y, Ong J. et al. The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr Polym. 2007;68:561–7.

    Article  CAS  Google Scholar 

  11. Kim H-J, Zhang K, Moore L, Ho D. Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano. 2014;8:2998–3005.

    Article  CAS  Google Scholar 

  12. Lavrador P, Esteves MR, Gaspar VM, Mano JF. Stimuli-responsive nanocomposite hydrogels for biomedical applications. Adv Funct Mater. 2021;31:2005941.

    Article  CAS  Google Scholar 

  13. Rafieian S, Mirzadeh H, Mahdavi H, Masoumi ME. A review on nanocomposite hydrogels and their biomedical applications. Sci Eng Composite Mater. 2019;26:154–74.

    Article  CAS  Google Scholar 

  14. Cirillo G, Hampel S, Spizzirri UG, Parisi OI, Picci N, Iemma F. Carbon nanotubes hybrid hydrogels in drug delivery: a perspective review. BioMed Res Int. 2014;2014:825017.

    Article  Google Scholar 

  15. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH. et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65:1964–2015.

    Article  CAS  Google Scholar 

  16. Gangrade A, Mandal BB. Injectable carbon nanotube impregnated silk based multifunctional hydrogel for localized targeted and on-demand anticancer drug delivery. ACS Biomater Sci Eng. 2019;5:2365–81.

    Article  CAS  Google Scholar 

  17. Ribeiro JS, Bordini EAF, Ferreira JA, Mei L, Dubey N, Fenno JC. et al. Injectable MMP-responsive nanotube-modified gelatin hydrogel for dental infection ablation. ACS Appl Mater Interfaces. 2020;12:16006–17.

    Article  CAS  Google Scholar 

  18. Kameta N, Minamikawa H, Masuda M. Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space. Soft Matter. 2011;7:4539–61.

    Article  CAS  Google Scholar 

  19. Shimizu T, Ding W, Kameta N, Soft-Matter. Nanotubes: a platform for diverse functions and applications. Chem Rev. 2020;120:2347–407.

    Article  CAS  Google Scholar 

  20. Valéry C, Artzner F, Paternostre M. Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications. Soft Matter. 2011;7:9583–94.

    Article  Google Scholar 

  21. Komatsu T. Protein-based nanotubes for biomedical applications. Nanoscale. 2012;4:1910–8.

    Article  CAS  Google Scholar 

  22. Shimizu T, Minamikawa H, Kogiso M, Aoyagi M, Kameta N, Ding W. et al. Self-organized nanotube materials and their application in bioengineering. Polym J. 2014;46:831–58.

    Article  CAS  Google Scholar 

  23. Meilander NJ, Pasumarthy MK, Kowalczyk TH, Cooper MJ, Bellamkonda RV. Sustained release of plasmid DNA using lipid microtubules and agarose hydrogel. J Controlled Release. 2003;88:321–31.

    Article  CAS  Google Scholar 

  24. Kameta N, Yoshida K, Masuda M, Shimizu T. Supramolecular nanotube hydrogels: remarkable resistance effect of confined proteins to denaturants. Chem Mater. 2009;21:5892–8.

    Article  CAS  Google Scholar 

  25. Son KH, Lee JW. Synthesis and characterization of poly (Ethylene Glycol) based thermo-responsive hydrogels for cell sheet engineering. Materials. 2016;9:854.

    Article  Google Scholar 

  26. Ding W, Wada M, Minamikawa H, Kameta N, Masuda M, Shimizu T. Cisplatin-encapsulated organic nanotubes by endo-complexation in the hollow cylinder. Chem Commun. 2012;48:8625–7.

    Article  CAS  Google Scholar 

  27. Lim TM, Ulaganathan M, Yan Q. Chapter 14 - Advances in membrane and stack design of redox flow batteries (RFBs) for medium- and large-scale energy storage. In Advances in batteries for medium and large-scale energy storage, Menictas C, Skyllas-Kazacos M, Lim TM. Eds. Woodhead Publishing: 2015; pp 477–507.

  28. Mukhopadhyay P, Sarkar K, Bhattacharya S, Bhattacharyya A, Mishra R, Kundu P. pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydr Polym. 2014;112:627–37.

    Article  CAS  Google Scholar 

  29. Ding W, Minamikawa H, Kameta N, Shimizu T, Masuda M. Effects of PEGylation on the physicochemical properties and in vivo distribution of organic nanotubes. Int J Nanomed. 2014;9:5811–23.

    Article  CAS  Google Scholar 

  30. Ding W, Kameta N, Minamikawa H, Wada M, Shimizu T, Masuda M. Hybrid organic nanotubes with dual functionalities localized on cylindrical nanochannels control the release of doxorubicin. Adv Healthc Mater. 2012;1:699–706.

    Article  CAS  Google Scholar 

  31. Das R, Kumar R, Banerjee SL, Kundu P. Engineered elastomeric bio-nanocomposites from linseed oil/organoclay tailored for vibration damping. RSC Adv. 2014;4:59265–74.

    Article  CAS  Google Scholar 

  32. Ghosh R, Misra A. Tailored viscoelasticity of a polymer cellular structure through nanoscale entanglement of carbon nanotubes. Nanoscale Adv. 2020;2:5375–83.

    Article  CAS  Google Scholar 

  33. Gaharwar AK, Patel A, Dolatshahi-Pirouz A, Zhang H, Rangarajan K, Iviglia G. et al. Elastomeric nanocomposite scaffolds made from poly (glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomater Sci. 2015;3:46–58.

    Article  CAS  Google Scholar 

  34. Shah K, Vasileva D, Karadaghy A, Zustiak S. Development and characterization of polyethylene glycol–carbon nanotube hydrogel composite. J Mater Chem B. 2015;3:7950–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a KAKENHI from the Japan Society for the Promotion of Science (grant no. JP18K09469).

Author information

Authors and Affiliations

Authors

Contributions

D. Wu and W. Ding conceived and planned the experiments. D. Wu took the lead in conducting the experiments, analyzing the data and writing the mannuscript. W. Ding contributed to the final version of the manuscript. N. Kameta commented on the manuscript writing.

Corresponding author

Correspondence to Wuxiao Ding.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Ding, W. & Kameta, N. Functionalized organic nanotubes with highly tunable crosslinking site density for mechanical enhancement and pH-controlled drug release of nanocomposite hydrogels. Polym J 54, 67–78 (2022). https://doi.org/10.1038/s41428-021-00556-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00556-1

This article is cited by

Search

Quick links