Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Facile preparation of 2-methylene-1,3-dioxepane-based thermoresponsive polymers and hydrogels

Subjects

Abstract

Thermoresponsive and degradable hydrogels are considered promising materials for the development of smart drug delivery carriers that can be applied in the human body. However, the synthesis of a thermoresponsive degradable hydrogel with desirable properties is challenging. Here, we prepared thermoresponsive degradable copolymers and hydrogels by radical copolymerization of 2-methylene-1,3-dioxepane and N,N-dimethylacrylamide. The obtained polymers exhibited low critical solution temperature-type phase separation and a swelling-deswelling behavior. Under alkaline conditions (pH 11.3), these materials degraded and turned into water-soluble oligomers. In addition, the hydrogels self-degraded in PBS due to the decreased pH of the inner hydrogel. The prepared thermoresponsive degradable polymers and hydrogels have potential applicability as stimuli-responsive drug delivery carriers and cell culture scaffolds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Concheiro A, Alvarez-Lorenzo C. Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices. Adv Drug Deliv Rev 2013;65:1188–203.

    Article  CAS  Google Scholar 

  2. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2014;62:147–66.

    Google Scholar 

  3. Qui Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001;53:321–39.

    Article  Google Scholar 

  4. Vileberghe SV, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387–408.

    Article  Google Scholar 

  5. Billiet T, Vandenhaute M, Schelfhout J, Vlierberghe SV, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33:6020–41.

    Article  CAS  Google Scholar 

  6. Schiphorst J, Coleman S, Stumpel JE, Azouz AB, Diamond D, Schenning APHJ. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications. Chem Mater 2015;27:5925–31.

    Article  Google Scholar 

  7. Gan J, Guan X, Zheng J, Guo H, Wu K, Liang L, et al. Biodegradable, thermoresponsive PNIPAM-based hydrogel scaffolds for the sustained release of levofloxacin. RSC Adv. 2016;6:32967–78.

    Article  CAS  Google Scholar 

  8. Zhao C, Zhuang X, He P, Xiao C, Sun J, Chen X, et al. Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer. 2009;50:4308–16.

    Article  CAS  Google Scholar 

  9. Yamawaki K, Asoh T, Kikuchi A. Redox-responsive minimized fragmentation of three-armed oligo(ethylene glycol) gels for protein release. Colloid Surf B. 2016;146:343–51.

    Article  CAS  Google Scholar 

  10. Aimetti A, Machen AJ, Anseth KS. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials. 2009;30:6048–54.

    Article  CAS  Google Scholar 

  11. Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam. Biomaterials. 2005;26:3055–64.

    Article  CAS  Google Scholar 

  12. Aranaz I, Campos EM, Nash ME, Tardajos MG, Reinecke H, Elvira C, et al. Pseudo-double network hydrogels with unique properties as supports for cell manipulation. J Mater Chem B. 2014;2:3839–48.

    Article  CAS  Google Scholar 

  13. Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H. Adhesion and mechanical properties of PNIPAM microgel films and their potential use as switchable cell culture substrates. Adv Funct Mater 2010;20:3235–43.

    Article  CAS  Google Scholar 

  14. Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide. J Macromol Sci. 1968;2:1441–55.

    Article  CAS  Google Scholar 

  15. Chen Y, Wu H, Sun J, Dong G, Wang T. Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery. Langmuir. 2013;29:3721–9.

    Article  CAS  Google Scholar 

  16. Galphrin A, Long TJ, Ratner BD. Degradable, thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Biomacromolecules. 2010;11:2583–92.

    Article  Google Scholar 

  17. Komatsu S, Kayano H, Ando Y, Asoh T, Kikuchi A. Preparation of thermo- and redox-responsive branched polymers composed of three-armed oligo(ethylene glycol. J Polym Sci. 2018;56:2623–9.

    Article  CAS  Google Scholar 

  18. Miyazaki H, Kataoka K. Preparation of polyacrylamide derivatives showing thermo-reversible coacervate formation and their potential application to two-phase separation processes. Polymer. 1996;37:681–5.

    Article  CAS  Google Scholar 

  19. Maeda T, Takenouchi M, Yamamoto K, Aoyagi T. Analysis of the formation mechanism for thermoresponsive-type coacervate with Functional Copolymers Consisting ofN-Isopropylacrylamide and 2-Hydroxyisopropylacrylamide. Biomacromolecules. 2006;7:2230–6.

    Article  CAS  Google Scholar 

  20. Yamamoto K, T Serizawa T, Akashi M. Synthesis and thermosensitive properties of Poly[(N‐vinylamide)‐co‐(vinyl acetate)]s and their hydrogels. Macromol Chem Phys. 2003;204:1027–33.

    Article  CAS  Google Scholar 

  21. Komatsu S, Asoh T, Ishihara R, Kikuchi A. Facile preparation of degradable thermoresponsive polymers as biomaterials: Thermoresponsive polymers prepared by radical polymerization degrade to water-soluble oligomers. Polymer. 2017;130:68–73.

    Article  CAS  Google Scholar 

  22. Komatsu S, Ikedo Y, Asoh T, Ishihara R, Kikuchi A. Fabrication of hybrid capsules via CaCO3 crystallization on degradable coacervate droplets. Langmuir. 2018;34:3981–6.

    Article  CAS  Google Scholar 

  23. Komatsu S, Asoh T, Ishihara R, Kikuchi A. Fabrication of thermoresponsive degradable hydrogel made by radical polymerization of 2-methylene-1,3-dioxepane: Unique thermal coacervation in hydrogel. Polymer. 2019;179:121633.

    Article  CAS  Google Scholar 

  24. Jackson AW. Reversible-deactivation radical polymerization of cyclic ketene acetals. Polym Chem 2020;11:3525–45.

    Article  CAS  Google Scholar 

  25. Wairs U, Chennamaneni LR, Thoniyot P, Zhang H, Jackson AW. Main-chain degradable star polymers comprised of pH-responsive hyperbranched cores and thermoresponsive polyethylene glycol-based coronas. Polym Chem 2018;9:4824–39.

    Article  Google Scholar 

  26. Yiu A, Simchuk D, Hao J. Facile synthesis of novel thermo‐responsive polyvalerolactones with tunable LCSTs. Macromol Chem Phys. 2020;221:2000136.

    Article  CAS  Google Scholar 

  27. Bailey WJ, Ni Z, Wu SR. Synthesis of poly‐ϵ‐caprolactone via a free radical mechanism. Free radical ring‐opening polymerization of 2‐methylene‐1,3‐dioxepane. J Polym Chem Sci. 1982;20:3021–30.

    Article  CAS  Google Scholar 

  28. Zhao, Pi B, Zhao L, Tian S, Ge J, Yang H, et al. RSC Adv., 2019;9:11833–41.

  29. Tardy A, Nicolas J, Gigmes D, Lefay C, Guillaneuf Y. Radical ring-opening polymerization: scope, limitations, and application to (Bio)degradable materials. Chem Rev 2017;117:1319–406.

    Article  CAS  Google Scholar 

  30. Hedir GG, Arno MC, Langlais M, Husband JT, O’Reilly RK, Dove AP. Poly(oligo(ethylene glycol) vinyl acetate)s: a versatile class of thermoresponsive and biocompatible polymers. Angew Chem Int Ed 2017;56:9178–82.

    Article  CAS  Google Scholar 

  31. Undin J, Finne-Wistrand A, Albertsson A. Copolymerization of 2-methylene-1,3-dioxepane and glycidyl methacrylate, a well-defined and efficient process for achieving functionalized polyesters for covalent binding of bioactive molecules. Biomacromolecules. 2013;14:2095–102.

    Article  CAS  Google Scholar 

  32. Asoh T, Nakajima T, Matsuyama T, Kikuchi A. Surface-functionalized biodegradable nanoparticles consisting of amphiphilic graft polymers prepared by radical copolymerization of 2-methylene-1,3-dioxepane and macromonomers. Langmuir. 2015;31:6879–85.

    Article  CAS  Google Scholar 

  33. Lück M, Schröder W, Paulke BR, Blunk T, Müller RH. Complement activation by model drug carriers for intravenous application: determination by two-dimensional electrophoresis. Biomaterials. 1999;20:2063–8.

    Article  Google Scholar 

  34. Ratchford N, Bangsaruntip S, Sun X, Welsher K, Dai H. Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J Am Chem Soc 2007;129:2448–9.

    Article  Google Scholar 

  35. Low ZW, Chee PL, Kai D, Loh XJ. The role of hydrogen bonding in alginate/poly(acrylamide-co-dimethylacrylamide) and alginate/poly(ethylene glycol) methyl ether methacrylate-based tough hybrid hydrogels. RSC Adv. 2015;5:57678–85.

    Article  CAS  Google Scholar 

  36. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev 2003;55:1261–77.

    Article  CAS  Google Scholar 

  37. Knauf J, Bell DP, Hirtzer P, Luo ZP, Young JD, Katre NV. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. J Biol Chem 1988;263:15064–70.

    Article  CAS  Google Scholar 

  38. Huang MH, Li S, Vert M. Synthesis and degradation of PLA–PCL–PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and dl-lactide. Polymer. 2004;45:8675–81.

    Article  CAS  Google Scholar 

  39. Tran J, Pesenti T, Cressonnier J, Lefay C, Gigmes D, Guillaneuf Y, et al. Degradable copolymer nanoparticles from radical ring-opening copolymerization between cyclic ketene acetals and vinyl ethers. Biomacromolecules. 2019;20:305–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kikuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, S., Sato, T. & Kikuchi, A. Facile preparation of 2-methylene-1,3-dioxepane-based thermoresponsive polymers and hydrogels. Polym J 53, 731–739 (2021). https://doi.org/10.1038/s41428-021-00463-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00463-5

This article is cited by

Search

Quick links