Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Isolated and aggregated carvacrol guest molecules in cocrystalline poly(2,6-dimethyl-1,4-phenylene)oxide films

Abstract

Poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) is a high-performance commercial thermoplastic polymer that exhibits cocrystalline phases (CC) with many low molecular mass guest molecules as well as nanoporous crystalline (NC) phases. In this paper, preparation and characterization, mainly by WAXD and FTIR techniques, of PPO films exhibiting the CC phase with carvacrol (a relevant natural antimicrobial) are reported. The study shows that the relative intensities of two O–H out-of-plane deformation peaks (at 698 and 717 cm−1) of carvacrol are highly sensitive to its concentration in CC films. The reported data can be rationalized by assuming that 698 and 717 cm−1 peaks are due to isolated and hydrogen-bonded guest molecules, respectively, and by preferential inclusion of carvacrol in the cavities of the NC phase. Polarized FTIR spectra of axially stretched CC PPO/carvacrol films show that the guest peak at 717 cm−1 is not dichroic, while the guest peak at 698 cm−1 is markedly dichroic. This confirms that the O–H out-of-plane deformation peak at 698 cm−1 is due to isolated guest molecules, which are mainly enclosed in the cavities of the axially oriented CC phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guenet JM. Polymer-Solvent Molecular Compounds. Elsevier Science; 1st edition, 2008.

  2. Guerra G, Daniel C, Rizzo P, Tarallo O. Advanced materials based on polymer cocrystalline forms. J Polym Sci Pol Phys. 2012;50:305–22.

    Article  CAS  Google Scholar 

  3. Zheng Y, Pan P. Crystallization of biodegradable and biobased polyesters: polymorphism, cocrystallization, and structure-property relationship. Prog Polym Sci. 2020;109:101291.

    Article  CAS  Google Scholar 

  4. Marubayashi H, Asai S, Sumita M. Crystal structures of poly(l-lactide)–CO2 complex and its emptied form. Polymer. 2012;53:4262–71.

    Article  CAS  Google Scholar 

  5. Marubayashi H, Asai S, Sumita M. Complex formation of poly(L-lactide) with solvent molecules. Macromolecules. 2012;45:1384–97.

    Article  CAS  Google Scholar 

  6. Marubayashi H, Asai S, Sumita M. Guest-induced crystal-to-crystal transitions of poly(L‑lactide) complexes. J Phys Chem B. 2013;117:385–97.

    Article  CAS  PubMed  Google Scholar 

  7. Tashiro K, Ueno Y, Yoshioka A, Kobayashi M. Molecular mechanism of solvent-induced crystallization of syndiotactic polystyrene glass. 1. Time-resolved measurements of infrared/Raman spectra and X-ray diffraction. Macromolecules. 2001;34:310–5.

    Article  CAS  Google Scholar 

  8. Mochizuki J, Sano T, Tokami T, Itagaki H. Decisive properties of solvent able to form gels with syndiotactic polystyrene. Polymer. 2015;67:118–27.

    Article  CAS  Google Scholar 

  9. Sano T, Ebihara H, Sano S, Okabe T, Itagaki H. The ways of connecting crystalline phases having tubular cavities like stringing beads: New conductive polymer composites prepared by the polymerization of aniline in highly oriented ε crystalline phase of syndiotactic polystyrene. Eur Polym J. 2020;138:109975.

    Article  CAS  Google Scholar 

  10. Dasgupta D, Nandi AK. Multiporous polymeric materials from thermoreversible poly(vinylidenefluoride) gels. Macromolecules. 2005;38:6504–12.

    Article  CAS  Google Scholar 

  11. Dasgupta D, Malik S, Thierry A, Guenet JM, Nandi AK. Thermodynamics, morphology, and structure of the poly(vinylidene fluoride)-ethyl acetoacetate system. Macromolecules. 2006;39:6110–4.

    Article  CAS  Google Scholar 

  12. Choi Y-S, Miyasaka K. Structure and properties of poly(vinyl alcohol)-iodine complex formed in the crystal phase of poly(vinyl alcohol) films. J Appl Polym Sci. 1994;51:613–8.

    Article  CAS  Google Scholar 

  13. Tashiro K, Kitai H, Saharin SM, Shimazu A, Itou T. Quantitative crystal structure analysis of poly(vinyl alcohol)-iodine complexes on the basis of 2D X-ray diffraction, raman spectra, and computer simulation techniques. Macromolecules. 2015;48:2138–48.

    Article  CAS  Google Scholar 

  14. De Rosa C, Guerra G, Petraccone V, Pirozzi B. Crystal structure of the emptied clathrate form (δe Form) of syndiotactic polystyrene. Macromolecules. 1997;30:4147–52.

    Article  Google Scholar 

  15. Petraccone V, Ruiz de Ballesteros O, Tarallo O, Rizzo P, Guerra G. Nanoporous polymer crystals with cavities and channels. Chem Mater. 2008;20:3663–8.

    Article  CAS  Google Scholar 

  16. Gowd EB, Tashiro K, Ramesh C. Structural phase transitions of syndiotactic polystyrene. Prog Polym Sci. 2009;34:280–315.

    Article  CAS  Google Scholar 

  17. Acocella MR, Rizzo P, Daniel C, Tarallo O, Guerra G. Nanoporous triclinic δ modification of syndiotactic polystyrene. Polymer. 2015;63:230–6.

    Article  CAS  Google Scholar 

  18. Daniel C, Antico P, Guerra G. Etched fibers of syndiotactic polystyrene with nanoporous-crystalline phases. Macromolecules. 2018;51:6138–48.

    Article  CAS  Google Scholar 

  19. Gui H, Zhang T, Guo Q. Nanofibrous, emulsion-templated syndiotactic polystyrenes with superhydrophobicity for oil spill cleanup. ACS Appl Mater Interfaces. 2019;11:36063–72.

    Article  CAS  PubMed  Google Scholar 

  20. Uda Y, Kaneko F, Kawaguchi T. Selective guest uptake from solvent mixtures in the clathrate phase of syndiotactic polystyrene. Macromol Rapid Commun. 2004;25:1900–4.

    Article  CAS  Google Scholar 

  21. Mahesh KPO, Sivakumar M, Yamamoto Y, Tsujita Y, Yoshimizu H, Okamoto S. Structure and properties of the mesophase of syndiotactic polystyrene: IX. Preferential sorption behavior of sPS-p-chlorotoluene mesophase membrane in a mixture of solvents. J Membr Sci. 2005;262:11–19.

    Article  CAS  Google Scholar 

  22. Tanigami K, Ishii D, Nakaoki T, Stroeve P. Characterization of toluene and 2-methylnaphthalene transport separated by syndiotactic polystyrene having various crystalline forms. Polym J. 2013;45:1135–9.

    Article  CAS  Google Scholar 

  23. Shaiju P, Bhoje Gowd E. Factors controlling the structure of syndiotactic polystyrene upon the guest exchange and guest extraction processes. Polymer. 2015;56:581–9.

    Article  CAS  Google Scholar 

  24. Kobayashi H, Urakawa O, Kaneko F, Inoue T. Dynamics of polar aromatic molecules confined in a nanocavity of δ-phase of syndiotactic polystyrene as studied by dielectric spectroscopy. Chem Phys. 2016;479:122–8.

    Article  CAS  Google Scholar 

  25. Tozawa M, Tamai Y. Structural analysis of molecular cavity using a 3D printer. J Comput Chem Jpn. 2016;15:97–104.

    Article  CAS  Google Scholar 

  26. Kobayashi H, Akazawa S, Urakawa O, Kaneko F, Inoue T. Anisotropic dynamics of benzonitrile confined in δ and ε clathrate phases of syndiotactic polystyrene. Macromolecules. 2018;51:8611–9.

    Article  CAS  Google Scholar 

  27. Pilla P, Cusano A, Cutolo A, Giordano M, Mensitieri G, Rizzo P, et al. Molecular sensing by nanoporous crystalline polymers. Sensors. 2009;9:9816–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erdogan M, Özbek Z, Çapan R, Yagci Y. Characterization of polymeric LB thin films for sensor applications. J Appl Polym Sci. 2012;123:2414–22.

    Article  CAS  Google Scholar 

  29. Daniel C, Longo S, Fasano G, Vitillo JG, Guerra G. Nanoporous crystalline phases of poly(2,6-dimethyl-1,4-phenylene)oxide. Chem Mater. 2011;23:3195–3200.

    Article  CAS  Google Scholar 

  30. Galizia M, Daniel C, Fasano G, Guerra G, Mensitieri G. Gas sorption and diffusion in amorphous and semicrystalline nanoporous poly(2,6-dimethyl-1,4-phenylene)oxide. Macromolecules. 2012;45:3604–15.

    Article  CAS  Google Scholar 

  31. Daniel C, Zhovner D, Guerra G. Thermal stability of nanoporous crystalline and amorphous phases of poly(2,6-dimethyl-1,4-phenylene) oxide. Macromolecules. 2013;46:449–54.

    Article  CAS  Google Scholar 

  32. Galizia M, Daniel C, Guerra G, Mensitieri G. Solubility and diffusivity of low molecular weight compounds in semicrystalline poly-(2,6-dimethyl-1,4-phenylene)oxide: the role of the crystalline phase. J Membr Sci. 2013;443:100–6.

    Article  CAS  Google Scholar 

  33. Daniel C, Pellegrino M, Venditto V, Aurucci S, Guerra G. Nanoporous-crystalline poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) aerogels. Polymer. 2016;105:96–103.

    Article  CAS  Google Scholar 

  34. Lova P, Bastianini C, Giusto P, Patrini M, Rizzo P, Guerra G, et al. Label-free vapor selectivity in poly(p-phenylene Oxide) photonic crystal sensors. ACS Appl Mater Interfaces. 2016;8:31941–50.

    Article  CAS  PubMed  Google Scholar 

  35. Rizzo P, Gallo C, Vitale V, Tarallo O, Guerra G. Nanoporous-crystalline films of PPO with parallel and perpendicular polymer chain orientations. Polymer. 2019;167:193–201.

    Article  CAS  Google Scholar 

  36. Nagendra B, Cozzolino A, Daniel C, Rizzo P, Guerra G, Auriemma F, et al. Two nanoporous-crystalline forms of PPO and related cocrystalline forms. Macromolecules. 2019;52:9646–56.

    Article  CAS  Google Scholar 

  37. Golla M, Nagendra B, Rizzo P, Daniel C, Ruiz de Ballesteros O, Guerra G. Polymorphism of poly(2,6-dimethyl-1,4-phenylene) oxide in axially stretched films. Macromolecules. 2020;53:2287–94.

    Article  CAS  Google Scholar 

  38. Musto P, Mensitieri G, Cotugno S, Guerra G, Venditto V. Probing by time-resolved FTIR spectroscopy mass transport, molecular interactions, and conformational ordering in the system chloroform-syndiotactic polystyrene. Macromolecules. 2002;35:2296–304.

    Article  CAS  Google Scholar 

  39. Daniel C, Alfano D, Guerra G, Musto P. Evaluation of the amount and composition of the polymer-rich and polymer-poor phases of syndiotactic polystyrene gels with binary solvent mixtures. Macromolecules. 2003;36:5742–50.

    Article  CAS  Google Scholar 

  40. Musto P, Manzari M, Guerra G. Spectroscopic investigation of host−guest interactions into clathrate phases of syndiotactic polystyrene containing chlorinated compounds. Macromolecules. 2000;33:143–9.

    Article  CAS  Google Scholar 

  41. Musto P, Rizzo P, Guerra G. Host-guest interactions and crystalline structure evolution in clathrate phases formed by syndiotactic polystyrene and 1,2-dichloroethane: a two-dimensional FTIR spectroscopy investigation. Macromolecules. 2005;38:6079–89.

    Article  CAS  Google Scholar 

  42. Albunia AR, Milano G, Venditto V, Guerra G. A clear-cut experimental method to discriminate between in-plane and out-of-plane molecular transition moments. J Am Chem Soc. 2005;127:13114–5.

    Article  CAS  PubMed  Google Scholar 

  43. Albunia AR, D’Aniello C, Guerra G, Gatteschi D, Mannini M, Sorace L. Ordering magnetic molecules within nanoporous crystalline polymers. Chem Mater. 2009;21:4750–2.

    Article  CAS  Google Scholar 

  44. Albunia AR, Venditto V, Guerra G. Infrared linear dichroism as a tool to evaluate volatile guest partition between amorphous and nanoporous-crystalline polymer phases. J Polym Sci Part B: Polym Phys. 2012;50:1474–9.

    Article  CAS  Google Scholar 

  45. Albunia AR, Guerra G. Spectroscopic investigation of guest-guest interactions in the nanoporous-crystalline δ and ε forms of syndiotactic polystyrene. J Phys Chem C. 2014;118:11774–83.

    Article  CAS  Google Scholar 

  46. Rizzo P, Cozzolino A, Guerra G. Chemical stabilization of hexanal molecules by inclusion as guests of nanoporous-crystalline syndiotactic polystyrene crystals. Macromolecules. 2019;52:2255–64.

    Article  CAS  Google Scholar 

  47. Golla M, Nagendra B, Fierro F, Rizzo P, Daniel C, Guerra G. Axially oriented nanoporous crystalline phases of poly(2,6-dimethyl-1,4-phenylene)oxide. ACS Appl Polym Mater. 2020;2:3518–24.

    Article  CAS  Google Scholar 

  48. Golla M, Nagendra B, Rizzo P, Daniel C, Guerra G. Axial orientation of co-crystalline phases of poly(2,6-dimethyl-1,4-phenylene)oxide films. Polymers. 2020;12:2394.

    Article  CAS  PubMed Central  Google Scholar 

  49. Ultee A, Bennik MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 2002;68:1561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Albunia AR, Rizzo P, Ianniello G, Rufolo C, Guerra G. Syndiotactic polystyrene films with a cocrystalline phase including carvacrol guest molecules. J Polym Sci Part B: Polym Phys. 2014;52:657–65.

    Article  CAS  Google Scholar 

  51. Scaffaro R, Maio A, Nostro A. Poly(lactic acid) /carvacrol-based materials: preparation, physicochemical properties, and antimicrobial activity. Appl Microbiol Biotech 2020;104:1823–35.

    Article  CAS  Google Scholar 

  52. Singh S, Khulbe KC, Matsuura T, Ramamurthy P. Membrane characterization by solute transport and atomic force microscopy. J Membr Sci. 1998;142:111–27.

    Article  CAS  Google Scholar 

  53. Tsujita Y. Gas sorption and permeation of glassy polymers with microvoids. Prog Polym Sci. 2003;28:1377–401.

    Article  CAS  Google Scholar 

  54. Huang Y, Paul DR. Physical aging of thin glassy polymer films monitored by gas permeability. Polymer. 2004;45:8377–93.

    Article  CAS  Google Scholar 

  55. Rea R, Ligi S, Christian M, Morandi V, Baschetti MG, De Angelis GM. Permeability and selectivity of PPO/graphene composites as mixed matrix membranes for CO2 capture and gas separation. Polymers. 2018;10:129.

    Article  PubMed Central  CAS  Google Scholar 

  56. Soniat M, Tesfaye M, Mafi A, Brooks DJ, Humphrey ND, Weng L-C, et al. Permeation of CO2 and N2 through glassy poly(dimethyl phenylene) oxide under steady- and pre-steady-state conditions. J Polym Sci. 2020;58:1207–28.

    Article  CAS  Google Scholar 

  57. Alexander LE, Huntington NY, Krieger RE. X-ray diffraction methods in polymer science. Huntington, NY: Krieger, 1979, ©1969. p. 210–1. Chapter 4.

  58. Nagendra B, Mondrone G, Daniel C, Rizzo P, Guerra G. Control of guest thermal release by crystalline host orientation. ACS Appl Polym Mater. 2021;3:949–55.

    Article  CAS  Google Scholar 

  59. Rajkumar P, Selvaraj S, Suganya R, Velmurugan D, Gunasekaran S, Kumaresan S. Vibrational and electronic spectral analysis of thymol an isomer of carvacrol isolated from Trachyspermum ammi seed: a combined experimental and theoretical study. Chem Data Collect. 2018;15-16:10–31.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of Ministero dell’Istruzione, dell’ Università e della Ricerca (MIUR), Italy is acknowledged. The authors are thankful to Dr. Ivano Immediata and Dr. Chiara Gallo for technical support and useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript and approved the final version.

Corresponding author

Correspondence to Gaetano Guerra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golla, M., Nagendra, B., Daniel, C. et al. Isolated and aggregated carvacrol guest molecules in cocrystalline poly(2,6-dimethyl-1,4-phenylene)oxide films. Polym J 53, 1093–1100 (2021). https://doi.org/10.1038/s41428-021-00511-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00511-0

Search

Quick links