Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Single- and two-photon recording of holograms at combined cationic and free-radical polymerization photoinitiated by thioxanthenone derivatives

Abstract

Single- and two-photon holographic recordings were performed in a photopolymer material consisting of two types of monomers: an acrylamide (1,4-bis(acryloyl)piperazine) and an epoxide ((bis(4-oxiran-2-ylmethoxy)phenyl) sulfide). Thus, cationic ring-opening polymerization and free-radical polymerization of the monomers were simultaneously initiated. The arylsulfonium salt (2-(N,N,N-triethylammonium)methyl-9-oxo-10-(4-heptyloxyphenyl)-9H-thioxanthenium dihexafluorophosphate) was chosen as the photoinitiator. Effective photopolymerization conditions were found for both (single- and two-photon) photoinitiation modes depending on the recording light intensity. The concentrations of the components (monomers and photoinitiator) in the photopolymer was optimized, and a refractive index change of as much as 0.0015 was achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kelly JV, O’Neill FT, Sheridan JT, Neipp C, Gallego S, Ortuno M. Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions. J Opt Soc Am B. 2005;22:407.

    Article  CAS  Google Scholar 

  2. Nuyken O, Pask SD. Ring-opening polymerization—an introductory review. Polymers. 2013;5:361.

    Article  Google Scholar 

  3. Crivello JV. The discovery and development of onium salt cationic photoinitiators. J Polym Sci, Part A: Polym Chem. 1999;37:4241.

    Article  CAS  Google Scholar 

  4. Sangermano M. Advances in cationic photopolymerization. Pure Appl Chem. 2012;84:2089.

    Article  CAS  Google Scholar 

  5. Dvornikov AS, Walker EP, Rentzepis PM. Two-photon three-dimensional optical storage memory. J Phys Chem A. 2009;113:13633.

    Article  CAS  Google Scholar 

  6. Márquez A, Martínez FJ, Fernández R, Gallego S, Álvarez ML, Pascual I, et al. PVA/AA photopolymers and PA-LCoS devices combined for holographic data storage. Proceedings of the SPIE Optics and Photonics for Information Processing X, vol 9970, 2016:997008.

  7. Rinne SA, Garcia-Santamaria F, Braun PV. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nat Photonics. 2008;2:52.

    Article  CAS  Google Scholar 

  8. Nelson EC, Garcia-Santamaria F, Braun PV. Lattice registered two photon polymerized features within colloidal photonic crystals and their optical properties. Adv Funct Mater. 2008;18:1983.

    Article  CAS  Google Scholar 

  9. Kawata Y, Ishitobi H, Kawata S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory. Opt Lett. 1998;23:756.

    Article  CAS  Google Scholar 

  10. Parthenopoulos DA, Rentzepis PM. Three-dimensional optical storage memory. Science. 1989;45:843.

    Article  Google Scholar 

  11. Steinberg I, Sh., Vasilyev EV, Belikov AY. Multilayer two-photon recording of microholograms in cationic ring-opening polymerization material. J Opt. 2013;15:105403.

    Article  Google Scholar 

  12. Stampfl J, Liska R, Ovsianikov A. Multiphoton lithography: techniques, materials and applications. 1st ed. SPi Global, Chennai, India: Wiley VCH; 2016.

  13. Shaw M, Nawrocki D, Hurditch R, Johnson D. Improving the process capability of SU-8. Microsyst Technol. 2003;10:1.

    Article  CAS  Google Scholar 

  14. Tasdelen MA, Kumbaraci V, Jockusch S, Turro NJ, Talinli N, Yagci Y. Photoacid generation by stepwise two-photon absorption: photoinitiated cationic polymerization of cyclohexene oxide by using benzodioxinone in the presence of iodonium salt. Macromolecules. 2008;41:295.

    Article  CAS  Google Scholar 

  15. Nowak D, Ortyl J, Kamińska-Borek I, Kukuła K, Topa M, Popielarz R. Photopolymerization of hybrid monomers, part i: comparison of the performance of selected photoinitiators in cationic and free-radical polymerization of hybrid monomers. Polym Test. 2017;64:313.

    Article  CAS  Google Scholar 

  16. Shelkovnikov VV, Loskutov VA, Vasil’ev EV, Shekleina NV, Ryabinin VA, Sinyakov AN. New acid photogenerators based on thioxanthen-9-one sulfonium derivatives for detritylation in the oligonucleotide synthesis. Russian Chem Bull, Int Ed. 2011;60:561.

    Article  CAS  Google Scholar 

  17. Stidl L, Jhaveri SJ, Ayothi R, Sha J, McMullen JD, Ng SYC, et al. Non-ionic photo-acid generators for applications in two-photon lithography. J Mater Chem. 2009;19:505.

    Article  Google Scholar 

  18. Loskutov VA, Shelkovnikov VV. Synthesis of hexafluorophosphates of 9-oxo-10-(4-heptoxyphenyl)thioxanthenium. Russ J Org Chem. 2006;42:298.

    Article  CAS  Google Scholar 

  19. Podkoscielna B, Worzakowska M. Synthesis, characterization, and thermal properties of diacrylic/divinylbenzene copolymers. J Therm Anal Calorim. 2010;101:235.

    Article  CAS  Google Scholar 

  20. Sadar MD, Mawji NR, Banuelos CA, Andersen RJ, Garcia Fernandez J. Bisphenol derivative therapeutics and methods for their use. 2011; WO201182488.

  21. Steinberg I, Sh., Loskutov VA, Shelkovnikov VV, Shepetkin YuA. Two-photon recording of microholograms in photopolymer materials with new cationic thioxanthone photoinitiators. Opt Commun. 2008;281:4297.

    Article  CAS  Google Scholar 

  22. Kogelnik H. Coupled wave theory for thick hologram gratings. Bell Syst Tech J. 1969;48:2909.

    Article  Google Scholar 

  23. Gleeson MR, Liu S, Sheridan JT. Improvement of photopolymer materials for holographic data storage. J Mater Sci. 2009;44:6090.

    Article  CAS  Google Scholar 

  24. Su WF. Principles of polymer design and synthesis. Lecture notes in chemistry, vol 82. Heidelberg, New York, Dordrecht, London: Springer; 2013.

  25. Crivello JV, Ortiz RA. Synthesis of epoxy monomers that undergo synergistic photopolymerization by a radical-induced cationic mechanism. J Polym Sci: Part A: Polym Chem. 2001;39:3578.

    Article  CAS  Google Scholar 

  26. Rawle AF. Refractive Index Measurements Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Encyclopedia of Spectroscopy and Spectrometry. 3rd ed. Oxford: Academic Press; 2017.

  27. Xueping G, Qiang Y, Song L, Misra A, Spencer P. Visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization of methacrylate/epoxy: polymerization kinetics, crosslinking structure, and dynamic mechanical properties. Macromol Chem Phys. 2015;216:856.

    Article  Google Scholar 

  28. Baidak AA, Lie´Geois JM, Sperling LH. Simultaneous interpenetrating polymer networks based on epoxy–acrylate combinations. J Polym Sci: Part B: Polym Phys. 1997;35:1973.

    Article  CAS  Google Scholar 

  29. Chen F, Cook WD. Curing kinetics and morphology of IPNs from a flexible dimethacrylate and a rigid epoxy via sequential photo and thermal polymerization. Eur Polym J. 2008;44:1796.

    Article  CAS  Google Scholar 

  30. Bomze D, Knaack P, Liska R. Successful radical induced cationic frontal polymerization of epoxy-based monomers by C–C labile compounds. Polym Chem. 2015;6:8161.

    Article  CAS  Google Scholar 

  31. Kaya K, Seba M, Fujita T, Yamago S, Yagci Y. Visible light-induced free radical promoted cationic polymerization using organotellurium compounds. Polym Chem. 2018;9:5639.

    Article  CAS  Google Scholar 

  32. Nowers JR, Narasimhan B. The effect of interpenetrating polymer network formation on polymerization kinetics in an epoxy-acrylate system. Polymer. 2006;47:1108.

    Article  CAS  Google Scholar 

  33. Schissel SM, Jessop JLP. Enhancing epoxide kinetics and tuning polymer properties using hydroxylcontaining (meth)acrylates in hybrid photopolymerizations. Polymer. 2019;161:78.

    Article  CAS  Google Scholar 

  34. Becker HGO. Einführung in die Photochemie. VEB Berlin: Deutscher Verlag der Wissenschaften; 1976.

  35. Kuebler SM, Braun KL, Zhou W, Cammack JK, Yu T, Ober CK, et al. Design and application of high-sensitivity two-photon initiators for three-dimensional microfabrication. J Photochem Photobiol A: Chem. 2003;158:163.

    Article  CAS  Google Scholar 

  36. Jin M, Wu X, Xie J, Malval JP, Wana D. One/two-photon-sensitive photoacid generators based on benzene oligomer-containing D-p-A type aryl dialkylsulfonium salts. RSC Adv. 2015;5:55340.

    Article  CAS  Google Scholar 

  37. Jin M, Hong H, Xie J, Malval JP, Spangenberg A, Soppera O, et al. π-Conjugated sulfonium-based photoacid generators: an integrated molecular approach for efficient one and two-photon polymerization. Polym Chem. 2014;5:4747.

    Article  CAS  Google Scholar 

  38. Xia R, Malval JP, Jin M, Spangenberg A, Wan D, Pu H, et al. Enhancement of acid photogeneration through a para-to-meta substitution strategy in a sulfonium-based alkoxystilbene designed for two-photon polymerization. Chem Mater. 2012;24:237.

    Article  CAS  Google Scholar 

  39. Yanez CO, Andrade CD, Yao S, Luchita G, Bondar MV, Belfield KD. Photosensitive polymeric materials for two-photon 3D WORM optical data storage and microfabrication. ACS Symp Ser. 2010;8:111.

  40. Jin M, Xu H, Hong H, Malval JP, Zhang Y, Ren A, et al. Design of D-π-A type photoacid generators for high efficiency excitation at 405nm and 800nm. Chem Commun. 2013;49:8480.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Multi-Access Chemical Research Center SB RAS for spectral and analytical measurements.

Funding

This research was partially funded by the Ministry of Education and Science of the Russian Federation (the project number is № AAAA-A17-117053110007-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny V. Vasilyev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, E.V., Shelkovnikov, V.V., Orlova, N.A. et al. Single- and two-photon recording of holograms at combined cationic and free-radical polymerization photoinitiated by thioxanthenone derivatives. Polym J 52, 1279–1287 (2020). https://doi.org/10.1038/s41428-020-0381-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0381-2

This article is cited by

Search

Quick links