Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Highly sensitive updatable green hologram recording polymer with photoisomerizable azobenzene with highly birefringent acetylene as the side chain

Abstract

To develop highly sensitive updatable hologram materials, an azobenzene monomer was synthesized herein that supports effective photoisomerization under visible green beam irradiation. Furthermore, an acetylene group was introduced via Sonogashira coupling for higher birefringence. Polymerization was performed on the synthesized azobenzene monomer and on the methyl methacrylate (MMA) monomer, which serves as the skeleton of the film. The structures of all molecules were characterized by nuclear magnetic resonance (NMR) spectroscopy, and UV-Visible absorption spectroscopy was performed to analyze their optical properties. The holographic writing and rewriting capabilities of the newly synthesized azobenzene side-chain polymer were characterized by using a green laser as a writing beam, which showed that a high diffraction efficiency was reliably achievable under low-energy laser irradiation when evaluated with a four-wave-mixing optical scheme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gabor D. A new microscopic principle. Nature. 1948;777:777–8.

    Article  Google Scholar 

  2. Chen J-S, Chu DP. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Opt Express. 2015;23:18143.

    Article  Google Scholar 

  3. Ichihashi Y, Masuda N, Tsuge M, et al. One-unit system to reconstruct a 3-D movie at a video-rate via electroholography. Opt Express. 2009;17:19691.

    Article  Google Scholar 

  4. Javidi B, Nomura T. Securing information by use of digital holography. Opt Lett. 2000;25:28.

    Article  CAS  Google Scholar 

  5. Nishchal NK, Joseph J, Singh K. Securing information using fractional Fourier transform in digital holography. Opt Commun. 2004;235:253–9.

    Article  CAS  Google Scholar 

  6. Ghuloum H. 3D Hologram technology in learning environment. Proc 2010 InSITE Conference 2010;693–704.

  7. Yang L, Dong H, Alelaiwi A, Saddik AE. See in 3D: state of the art of 3D display technologies. Multimed Tools Appl. 2016;75:17121–55. https://doi.org/10.1007/s11042-015-2981-y.

    Article  Google Scholar 

  8. Fazhi L, Ligong Z, Feng Y, Donglin ZX. Optical testing method and its experiment on freeform surface with computer-generated hologram. Infrared Laser Eng. 2012;41:1052–6.

    Google Scholar 

  9. Fujita S, Fujita S. Photography based on silver halides. An overview. Org Chem Photogr. 2004;3–37.

  10. Shankoff TA. Phase holograms in dichromated gelatin. Appl Opt. 1968;7:2101–5.

    Article  CAS  Google Scholar 

  11. Curran RK, Shankoff TA. The mechanism of hologram formation in dichromated gelatin. Opt Soc Am. 1970;9:1651–7.

    CAS  Google Scholar 

  12. Lawrence JR, O’Neill FT, Sheridan JT. Photopolymer holographic recording material. Optik. 2001;112:449–63.

    Article  CAS  Google Scholar 

  13. Booth BL. Photopolymer material for holography. Appl Opt. 1975;14:593–601.

    Article  CAS  Google Scholar 

  14. Ikeda T. Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem. 2003;13:2037–57.

    Article  CAS  Google Scholar 

  15. Shishido A. Rewritable holograms based on azobenzene-containing liquid-crystalline polymers. Polym J. 2010;42:525–33.

    Article  CAS  Google Scholar 

  16. Saishoji A, Sato D, Shishido A, Ikeda T. Formation of bragg gratings with large angular multiplicity by means of the photoinduced reorientation of azobenzene copolymers. Langmuir 2007;23:320–6.

    Article  CAS  Google Scholar 

  17. Yamamoto T, Hasegawa M, Kanazawa A, Shiono T, Ikeda T. Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films. J Mater Chem. 2000;10:337–42.

    Article  CAS  Google Scholar 

  18. Okano K, Shishido A, Ikeda T. An azotolane liquid-crystalline polymer exhibiting extremely large birefringence and its photoresponsive behavior. Adv Mater. 2006;18:523–7.

    Article  CAS  Google Scholar 

  19. Okano K, Tsutsumi O, Shishido A, Ikeda T. Azotolane liquid-crystalline polymers: huge change in birefringence by photoinduced alignment change. J Am Chem Soc. 2006;128:15368–9.

    Article  CAS  Google Scholar 

  20. Zhang Q, Li JM, Niu LH, et al. A rapid response photochromic diarylethene material for rewritable holographic data storage. Chin Sci Bull. 2013;58:74–78.

    Article  CAS  Google Scholar 

  21. Cao L, Wang Z, Zong S, Zhang S, Zhang F, Jin G. Volume holographic polymer of photochromic diarylethene for updatable three-dimensional display. J Polym Sci Part B. 2016;54:2050–8.

    Article  CAS  Google Scholar 

  22. Kobayashi Y, Abe J. Real-time dynamic hologram of a 3D object with fast photochromic molecules. Adv Opt Mater. 2016;4:1354–7.

    Article  CAS  Google Scholar 

  23. Ishii N, Kato T, Abe J. A real-time dynamic holographic material using a fast photochromic molecule. Sci Rep. 2012;2:819.

    Article  Google Scholar 

  24. Tay S, et al. An updatable holographic three-dimensional display. Nature. 2008;451:694–8.

    Article  CAS  Google Scholar 

  25. Blanche PA, Bablumian A, Voorakaranam R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature. 2010;468:80–83.

    Article  CAS  Google Scholar 

  26. Kirby R, Sabat RG, Nunzi JM, Lebel O. Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation. J Mater Chem C. 2014;2:841–7.

    Article  CAS  Google Scholar 

  27. Kim K-H, Jeong Y-C. Nanoindentation study of optically patterned surface relief grating of azobenzene polymers. Opt Express. 2016;24:25242.

    Article  CAS  Google Scholar 

  28. Zarins E, Balodis K, Ruduss A, et al. Molecular glasses of azobenzene for holographic data storage applications. Opt Mater. 2018;79:45–52. https://doi.org/10.1016/j.optmat.2018.03.020.

    Article  CAS  Google Scholar 

  29. Lyu Z, Wang C, Li H, Pan Y, Xia R. Switchable biphotonic holographic recording in an azobenzene liquid crystal film. Opt Mater Express. 2018;8:2050.

    Article  CAS  Google Scholar 

  30. Bugakov M, Sakhno O, Boiko N, Ryabchun A. Polarization gratings in azobenzene-based fully liquid crystalline triblock copolymer. Macromol Rapid Commun. 2019;40:1–6.

    Article  Google Scholar 

  31. Blanche PA. Field guide to holography. SPIE; 2014.

  32. Provenzano C, Pagliusi P, Cipparrone G, Royes J, Piñol M, Oriol L. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences. J Phys Chem B. 2014;118:11849–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Industrial Program funded by the Ministry of Trade, Industry & Energy (10052667, Korea) and the KRICT core project (SS2021-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hak-Rin Kim or Jae-Won Ka.

Ethics declarations

Conflict of interest

We declare that there are no conflicts of interest to this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H.J., Joo, KI., Kang, Y.Y. et al. Highly sensitive updatable green hologram recording polymer with photoisomerizable azobenzene with highly birefringent acetylene as the side chain. Polym J 53, 539–547 (2021). https://doi.org/10.1038/s41428-020-00447-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00447-x

Search

Quick links