Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graphene oxide-incorporated hydrogels for biomedical applications

Abstract

Graphene and graphene derivatives (e.g., graphene oxide (GO)) have been incorporated into hydrogels to improve the properties (e.g., mechanical strength) of conventional hydrogels and/or develop new functions (e.g., electrical conductivity and drug loading/delivery). Unique molecular interactions between graphene derivatives and various small or macromolecules enable the fabrication of various functional hydrogels appropriate for different biomedical applications. In this mini-review, we highlight the recent progress in GO-incorporated hydrogels for biomedical applications while focusing on their specific uses as mechanically strong materials, electrically conductive scaffolds/electrodes, and high-performance drug delivery vehicles.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Montheil T, Echalier C, Martinez J, Subra G, Mehdi A. Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. J Mater Chem B. 2018;6:3434–48.

    CAS  PubMed  Google Scholar 

  2. Liu Y, He W, Zhang Z, Lee BP. Recent developments in tough hydrogels for biomedical applications. Gels. 2018;4:46.

    PubMed Central  Google Scholar 

  3. Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6:105–21.

    CAS  PubMed  Google Scholar 

  4. Bahram M, Mohseni N, Moghtader M. An introduction to hydrogels and some recent applications. In: Emerging concepts in analysis and applications of hydrogels. 2016. https://doi.org/10.5772/64301.

  5. Fu J, In Het Panhuis M. Hydrogel properties and applications. J Mater Chem B. 2019;7:1523–5.

    CAS  PubMed  Google Scholar 

  6. Martín C, Martín-Pacheco A, Naranjo A, Criado A, Merino S, Díez-Barra E, et al. Graphene hybrid materials? The role of graphene materials in the final structure of hydrogels. Nanoscale. 2019;11:4822–30.

    PubMed  Google Scholar 

  7. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.

    Google Scholar 

  8. Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels. 2017;3:6.

    PubMed Central  Google Scholar 

  9. Xue K, Wang X, Yong PW, Young DJ, Wu Y-L, Li Z, et al. Hydrogels as emerging materials for translational. Biomed Adv Ther. 2019;2:1800088.

    Google Scholar 

  10. Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–67.

    Google Scholar 

  11. Moghadam MN, Pioletti DP. Improving hydrogels' toughness by increasing the dissipative properties of their network. J Mech Behav Biomed Mater. 2015;41:161–7.

    CAS  PubMed  Google Scholar 

  12. Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels … a review. Saudi Pharm J. 2016;24:554–9.

    PubMed  Google Scholar 

  13. Jiang Y-Y, Zhu Y-J, Li H, Zhang Y-G, Shen Y-Q, Sun T-W, et al. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate. J Colloid Interface Sci. 2017;497:266–75.

    CAS  PubMed  Google Scholar 

  14. Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y, et al. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater. 2015;27:3566–71.

    CAS  PubMed  Google Scholar 

  15. Song F, Li X, Wang Q, Liao L, Zhang C. Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J Biomed Nanotechnol. 2015;11:40–52.

    CAS  PubMed  Google Scholar 

  16. Liu X, Miller AL, Park S, Waletzki BE, Zhou Z, Terzic A, et al. Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation. ACS Appl Mater Interfaces. 2017;9:14677–90.

    CAS  PubMed  Google Scholar 

  17. Alam A, Meng Q, Shi G, Arabi S, Ma J, Zhao N, et al. Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Compos Sci Technol. 2016;127:119–26.

    CAS  Google Scholar 

  18. Navaei A, Moore N, Sullivan T, Truong R, Q. Migrino D, Nikkhah R, et al. Electrically conductive hydrogel-based micro-topographies for the development of organized cardiac tissues. RSC Adv. 2017;7:3302–12.

    CAS  Google Scholar 

  19. Qazi TH, Rai R, Boccaccini AR. Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials. 2014;35:9068–86.

    CAS  PubMed  Google Scholar 

  20. Hu X, Vatankhah-Varnoosfaderani M, Zhou J, Li Q, Sheiko SS. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv Mater. 2015;27:6899–905.

    CAS  PubMed  Google Scholar 

  21. Pumera M. Electrochemistry of graphene, graphene oxide and other graphenoids: review. Electrochem Commun. 2013;36:14–8.

    CAS  Google Scholar 

  22. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110:132–45.

    CAS  PubMed  Google Scholar 

  23. Huang Y, Zhang M, Ruan W. High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties. J Mater Chem A. 2014;2:10508–15.

    CAS  Google Scholar 

  24. Nath J, Chowdhury A, Dolui SK. Chitosan/graphene oxide-based multifunctional pH-responsive hydrogel with significant mechanical strength, self-healing property, and shape memory effect. Adv Polym Technol. 2018;37:3665–79.

    CAS  Google Scholar 

  25. Aliyev E, Filiz V, Khan MM, Lee YJ, Abetz C, Abetz V. Structural characterization of graphene oxide: surface functional groups and fractionated oxidative debris. Nanomaterials. 2019;9:1180.

    CAS  PubMed Central  Google Scholar 

  26. Li C, Shi G. Functional gels based on chemically modified graphenes. Adv Mater. 2014;26:3992–4012.

    CAS  PubMed  Google Scholar 

  27. Aderibigbe BA, Owonubi SJ, Jayaramudu J, Sadiku ER, Ray SS. Targeted drug delivery potential of hydrogel biocomposites containing partially and thermally reduced graphene oxide and natural polymers prepared via green process. Colloid Polym Sci. 2015;293:409–20.

    CAS  Google Scholar 

  28. Shin SR, Li Y-C, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev. 2016;105:255–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Paik P. Graphene oxide for biomedical applications. J Nanomed Res. 2017;5:00136.

    Google Scholar 

  30. Bai H, Li C, Wang X, Shi G. On the gelation of graphene oxide. J Phys Chem C. 2011;115:5545–51.

    CAS  Google Scholar 

  31. Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T, et al. Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mater Sci Eng C. 2017;77:1363–75.

    CAS  Google Scholar 

  32. Zou X, Zhang L, Wang Z, Luo Y. Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc. 2016;138:2064–77.

    CAS  PubMed  Google Scholar 

  33. Lu X, Feng X, Werber JR, Chu C, Zucker I, Kim J-H, et al. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc Natl Acad Sci. 2017;114:E9793–801.

    CAS  PubMed  Google Scholar 

  34. Gurunathan S, Kim J-H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomed. 2016;11:1927–45.

    CAS  Google Scholar 

  35. Jastrzębska AM, Kurtycz P, Olszyna AR. Recent advances in graphene family materials toxicity investigations. J Nanopart Res. 2012;14:1320.

    PubMed  PubMed Central  Google Scholar 

  36. Ou L, Song B, Liang H, Liu J, Feng X, Deng B, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol. 2016;13:57.

    PubMed  PubMed Central  Google Scholar 

  37. Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett. 2018;10:53.

    PubMed  PubMed Central  Google Scholar 

  38. Dervin S, Murphy J, Aviles R, Pillai SC, Garvey M. An in vitro cytotoxicity assessment of graphene nanosheets on alveolar cells. Appl Surf Sci. 2018;434:1274–84.

    CAS  Google Scholar 

  39. Kalbacova M, Broz A, Kong J, Kalbac M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon. 2010;48:4323–9.

    CAS  Google Scholar 

  40. Lee WC, Lim CHYX, Shi H, Tang LAL, Wang Y, Lim CT, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5:7334–41.

    CAS  PubMed  Google Scholar 

  41. Li J, Wang G, Geng H, Zhu H, Zhang M, Di Z, et al. CVD growth of graphene on NiTi alloy for enhanced biological activity. ACS Appl Mater Interfaces. 2015;7:19876–81.

    CAS  PubMed  Google Scholar 

  42. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011;5:4670–8.

    CAS  PubMed  Google Scholar 

  43. de Luna LAV, de Moraes ACM, Consonni SR, Pereira CD, Cadore S, Giorgio S, et al. Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages. J Nanobiotechnol. 2016;14:12.

    Google Scholar 

  44. Mendes RG, Koch B, Bachmatiuk A, Ma X, Sanchez S, Damm C, et al. A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B. 2015;3:2522–9.

    CAS  PubMed  Google Scholar 

  45. Yue H, Wei W, Yue Z, Wang B, Luo N, Gao Y, et al. The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials. 2012;33:4013–21.

    CAS  PubMed  Google Scholar 

  46. Bengtson S, Kling K, Madsen AM, Noergaard AW, Jacobsen NR, Clausen PA, et al. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro. Environ Mol Mutagen. 2016;57:469–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Amrollahi-Sharifabadi M, Koohi MK, Zayerzadeh E, Hablolvarid MH, Hassan J, Seifalian AM. In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int J Nanomed. 2018;13:4757–69.

    CAS  Google Scholar 

  48. Manjunatha B, Park SH, Kim K, Kundapur RR, Lee SJ. In vivo toxicity evaluation of pristine graphene in developing zebrafish (Danio rerio) embryos. Environ Sci Pollut Res. 2018;25:12821–9.

    CAS  Google Scholar 

  49. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2010;6:8.

    PubMed  PubMed Central  Google Scholar 

  50. Xu M, Zhu J, Wang F, Xiong Y, Wu Y, Wang Q, et al. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly(acrylic acid)-functionalization is superior to PEGylation. ACS Nano. 2016;10:3267–81.

    CAS  PubMed  Google Scholar 

  51. Park J, Choi JH, Kim S, Jang I, Jeong S, Lee JY. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: graphene-incorporated hydrogels directly patterned with femtosecond laser ablation. Acta Biomater. 2019;97:141–53.

    CAS  PubMed  Google Scholar 

  52. Jo H, Sim M, Kim S, Yang S, Yoo Y, Park J-H, et al. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomater. 2017;48:100–9.

    CAS  PubMed  Google Scholar 

  53. Rosa V, Xie H, Dubey N, Madanagopal TT, Rajan SS, Morin JLP, et al. Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dent Mater. 2016;32:1019–25.

    CAS  PubMed  Google Scholar 

  54. Garcia-Alegria E, Iliut M, Stefanska M, Silva C, Heeg S, Kimber SJ, et al. Graphene oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Sci Rep. 2016;6:25917.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim T-H, Shah S, Yang L, Yin PT, Hossain MdK, Conley B, et al. Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano. 2015;9:3780–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces. 2015;7:6331–9.

    CAS  PubMed  Google Scholar 

  57. Park J, Park S, Ryu S, Bhang SH, Kim J, Yoon J-K, et al. Graphene‒regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthc Mater. 2014;3:176–81.

    CAS  PubMed  Google Scholar 

  58. Qiu Y, Wang Z, E. Owens AC, Kulaots I, Chen Y, B. Kane A, et al. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 2014;6:11744–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Choe G, Kim S-W, Park J, Park J, Kim S, Kim YS, et al. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials. 2019;225:119513.

    CAS  PubMed  Google Scholar 

  60. Kim J, Kim Y-R, Kim Y, Taek Lim K, Seonwoo H, Park S, et al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. J Mater Chem B. 2013;1:933–8.

    CAS  PubMed  Google Scholar 

  61. Wang F, Wen Y, Bai T. The composite hydrogels of polyvinyl alcohol–gellan gum-Ca2+ with improved network structure and mechanical property. Mater Sci Eng C. 2016;69:268–75.

    CAS  Google Scholar 

  62. Alam A, Zhang Y, Kuan H-C, Lee S-H, Ma J. Polymer composite hydrogels containing carbon nanomaterials—morphology and mechanical and functional performance. Prog Polym Sci. 2018;77:1–18.

    CAS  Google Scholar 

  63. Zhang S, Chen Y, Liu H, Wang Z, Ling H, Wang C, et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv Mater. 2019:e1904752. https://doi.org/10.1002/adma.201904752.

  64. Spencer AR, Primbetova A, Koppes AN, Koppes RA, Fenniri H, Annabi N. Electroconductive gelatin methacryloyl-PEDOT:PSS composite hydrogels: design, synthesis, and properties. ACS Biomater Sci Eng. 2018;4:1558–67.

    CAS  Google Scholar 

  65. Kleber C, Lienkamp K, Rühe J, Asplund M. Electrochemically controlled drug release from a conducting polymer hydrogel (PDMAAp/PEDOT) for local therapy and bioelectronics. Adv Healthc Mater. 2019;8:1801488.

    Google Scholar 

  66. Cha C, Shin SR, Gao X, Annabi N, Dokmeci MR, Tang XS, et al. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small. 2014;10:514–23.

    CAS  PubMed  Google Scholar 

  67. Li J, Illeperuma WRK, Suo Z, Vlassak JJ. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett. 2014;3:520–3.

    CAS  Google Scholar 

  68. Yang C, Liu Z, Chen C, Shi K, Zhang L, Ju X-J, et al. Reduced graphene oxide-containing smart hydrogels with excellent electro-response and mechanical properties for soft actuators. ACS Appl Mater Interfaces. 2017;9:15758–67.

    CAS  PubMed  Google Scholar 

  69. Ren J, Zhang A, Zhang L, Li Y, Yang W. Electrically conductive and mechanically tough graphene nanocomposite hydrogels with self-oscillating performance. Polym Int. 2019;68:1146–54.

    CAS  Google Scholar 

  70. Martín C, Merino S, González-Domínguez JM, Rauti R, Ballerini L, Prato M, et al. Graphene improves the biocompatibility of polyacrylamide hydrogels: 3D polymeric scaffolds for neuronal growth. Sci Rep. 2017;7:10942.

    PubMed  PubMed Central  Google Scholar 

  71. Yan X, Yang J, Chen F, Zhu L, Tang Z, Qin G, et al. Mechanical properties of gelatin/polyacrylamide/graphene oxide nanocomposite double-network hydrogels. Compos Sci Technol. 2018;163:81–88.

    CAS  Google Scholar 

  72. Valentin TM, Landauer AK, Morales LC, DuBois EM, Shukla S, Liu M, et al. Alginate-graphene oxide hydrogels with enhanced ionic tunability and chemomechanical stability for light-directed 3D printing. Carbon. 2019;143:447–56.

    CAS  Google Scholar 

  73. Das S, Irin F, Ma L, Bhattacharia SK, Hedden RC, Green MJ. Rheology and morphology of pristine graphene/polyacrylamide gels. ACS Appl Mater Interfaces. 2013;5:8633–40.

    CAS  PubMed  Google Scholar 

  74. Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, et al. High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem. 2011;21:10399–406.

    CAS  Google Scholar 

  75. Zhang N, Li R, Zhang L, Chen H, Wang W, Liu Y, et al. Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization. Soft Matter. 2011;7:7231–9.

    CAS  Google Scholar 

  76. Kumar A, Zo SM, Kim JH, Kim S-C, Han SS. Enhanced physical, mechanical, and cytocompatibility behavior of polyelectrolyte complex hydrogels by reinforcing halloysite nanotubes and graphene oxide. Compos Sci Technol. 2019;175:35–45.

    CAS  Google Scholar 

  77. Luo H, Dong J, Yao F, Yang Z, Li W, Wang J, et al. Layer-by-layer assembled bacterial cellulose/graphene oxide hydrogels with extremely enhanced mechanical properties. Nanomicro Lett. 2018;10:42.

    PubMed  PubMed Central  Google Scholar 

  78. Shin JE, Kim HW, Yoo BM, Park HB. Graphene oxide nanosheet-embedded crosslinked poly(ethylene oxide) hydrogel. J Appl Polym Sci. 2018;135:45417.

    Google Scholar 

  79. Surudžić R, Janković A, Mitrić M, Matić I, Juranić ZD, Živković L, et al. The effect of graphene loading on mechanical, thermal and biological properties of poly(vinyl alcohol)/graphene nanocomposites. J Ind Eng Chem. 2016;34:250–7.

    Google Scholar 

  80. Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.

    CAS  PubMed  Google Scholar 

  81. Jang J, Hong J, Cha C. Effects of precursor composition and mode of crosslinking on mechanical properties of graphene oxide reinforced composite hydrogels. J Mech Behav Biomed Mater. 2017;69:282–93.

    CAS  PubMed  Google Scholar 

  82. Shin SR, Aghaei‐Ghareh‐Bolagh B, Dang TT, Topkaya SN, Gao X, Yang SY, et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv Mater. 2013;25:6385–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhou M, Lozano N, Wychowaniec JK, Hodgkinson T, Richardson SM, Kostarelos K, et al. Graphene oxide: a growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater. 2019;96:271–80.

    CAS  PubMed  Google Scholar 

  84. Choe G, Oh S, Seok JM, Park SA, Lee JY. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale. 2019;11:23275–85.

    CAS  PubMed  Google Scholar 

  85. Wasalathilake KC, Galpaya DGD, Ayoko GA, Yan C. Understanding the structure-property relationships in hydrothermally reduced graphene oxide hydrogels. Carbon. 2018;137:282–90.

    CAS  Google Scholar 

  86. Bora C, Bharali P, Baglari S, Dolui SK, Konwar BK. Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity. Compos Sci Technol. 2013;87:1–7.

    CAS  Google Scholar 

  87. Compton OC, Nguyen ST. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. Small. 2010;6:711–23.

    CAS  PubMed  Google Scholar 

  88. Sayyar S, Murray E, C. Thompson B, Chung J, L. Officer D, Gambhir S, et al. Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater Chem B. 2015;3:481–90.

    CAS  PubMed  Google Scholar 

  89. Jing X, Mi H-Y, Peng X-F, Turng L-S. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon. 2018;136:63–72.

    CAS  Google Scholar 

  90. Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, et al. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett. 2015;15:1146–51.

    CAS  PubMed  Google Scholar 

  91. Green R. Elastic and conductive hydrogel electrodes. Nat Biomed Eng. 2019;3:9–10.

    PubMed  Google Scholar 

  92. Liu X, Kim JC, Miller AL, Waletzki BE, Lu L. Electrically conductive nanocomposite hydrogels embedded with functionalized carbon nanotubes for spinal cord injury. N J Chem. 2018;42:17671–81.

    CAS  Google Scholar 

  93. Zhou J, Yang X, Liu W, Wang C, Shen Y, Zhang F, et al. Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Theranostics. 2018;8:3317–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang S, Jang L, Kim S, Yang J, Yang K, Cho S, et al. Polypyrrole/alginate hybrid hydrogels: electrically conductive and soft biomaterials for human mesenchymal stem cell culture and potential neural tissue engineering applications. Macromol Biosci. 2016;16:1653–61.

    CAS  PubMed  Google Scholar 

  95. Li D-F, Wang W, Wang H-J, Jia X-S, Wang J-Y. Polyaniline films with nanostructure used as neural probe coating surfaces. Appl Surf Sci. 2008;255:581–4.

    CAS  Google Scholar 

  96. Dai T, Qing X, Lu Y, Xia Y. Conducting hydrogels with enhanced mechanical strength. Polymer. 2009;50:5236–41.

    CAS  Google Scholar 

  97. Shi Y, Ma C, Peng L, Yu G. Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. Adv Funct Mater. 2015;25:1219–25.

    CAS  Google Scholar 

  98. Wan C, Chen B. Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem. 2012;22:3637–46.

    CAS  Google Scholar 

  99. Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem. 2012;22:14160–7.

    CAS  Google Scholar 

  100. Qian Y, Song J, Zhao X, Chen W, Ouyang Y, Yuan W, et al. 3D fabrication with integration molding of a graphene oxide/polycaprolactone nanoscaffold for neurite regeneration and angiogenesis. Adv Sci. 2018;5:1700499.

    Google Scholar 

  101. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2009;39:228–40.

    PubMed  Google Scholar 

  102. Jing X, Mi H-Y, Napiwocki BN, Peng X-F, Turng L-S. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon. 2017;125:557–70.

    CAS  Google Scholar 

  103. Shin SR, Zihlmann C, Akbari M, Assawes P, Cheung L, Zhang K, et al. Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small. 2016;12:3677–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules. 2019;24:603.

    PubMed Central  Google Scholar 

  106. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012;64:49–60.

    Google Scholar 

  107. Ashley GW, Henise J, Reid R, Santi DV. Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proc Natl Acad Sci. 2013;110:2318–23.

    CAS  PubMed  Google Scholar 

  108. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.

    CAS  Google Scholar 

  109. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano. 2015;9:4686–97.

    CAS  PubMed  Google Scholar 

  110. Dannert C, Stokke BT, Dias RS. Nanoparticle-hydrogel composites: from molecular interactions to macroscopic behavior. Polymers. 2019;11:275.

    PubMed Central  Google Scholar 

  111. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ. Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci. 2015;2:1400010.

    Google Scholar 

  112. Wang J, Liu C, Shuai Y, Cui X, Nie L. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf B Biointerfaces. 2014;113:223–9.

    CAS  PubMed  Google Scholar 

  113. Chen K, Ling Y, Cao C, Li X, Chen X, Wang X. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery. Mater Sci Eng C. 2016;69:1222–8.

    CAS  Google Scholar 

  114. Kim S, Yoo Y, Kim H, Lee E, Lee JY. Reduction of graphene oxide/alginate composite hydrogels for enhanced adsorption of hydrophobic compounds. Nanotechnology. 2015;26:405602.

    PubMed  Google Scholar 

  115. Chen Y, Cheng W, Teng L, Jin M, Lu B, Ren L, et al. Graphene oxide hybrid supramolecular hydrogels with self-healable, bioadhesive and stimuli-responsive properties and drug delivery application. Macromol Mater Eng. 2018;303:1700660.

    Google Scholar 

  116. Bai H, Li C, Wang X, Shi G. A pH-sensitive graphene oxide composite hydrogel. Chem Commun. 2010;46:2376.

    CAS  Google Scholar 

  117. Wu J, Chen A, Qin M, Huang R, Zhang G, Xue B, et al. Hierarchical construction of a mechanically stable peptide–graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo. Nanoscale. 2015;7:1655–60.

    CAS  PubMed  Google Scholar 

  118. Liu W, Zhang X, Zhou L, Shang L, Su Z. Reduced graphene oxide (rGO) hybridized hydrogel as a near-infrared (NIR)/pH dual-responsive platform for combined chemo-photothermal therapy. J Colloid Interface Sci. 2019;536:160–70.

    CAS  PubMed  Google Scholar 

  119. Liu H-W, Hu S-H, Chen Y-W, Chen S-Y. Characterization and drug release behavior of highly responsive chip-like electrically modulated reduced graphene oxide–poly(vinyl alcohol) membranes. J Mater Chem. 2012;22:17311.

    CAS  Google Scholar 

  120. Mac Kenna N, Calvert P, Morrin A, Wallace GG, Moulton SE. Electro-stimulated release from a reduced graphene oxide composite hydrogel. J Mater Chem B. 2015;3:2530–7.

    Google Scholar 

  121. Chen B, Liu M, Zhang L, Huang J, Yao J, Zhang Z. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem. 2011;21:7736.

    CAS  Google Scholar 

  122. Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small. 2011;7:460–4.

    CAS  PubMed  Google Scholar 

  123. Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VT, Nikkhah M, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8:8050–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chengnan L, Pagneux Q, Voronova A, Barras A, Abderrahmani A, Plaisance V, et al. Near-infrared light activatable hydrogels for metformin delivery. Nanoscale. 2019;11:15810–20.

    CAS  PubMed  Google Scholar 

  125. Rasoulzadeh M, Namazi H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym. 2017;168:320–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2019R1A2C2002515 and NRF-2019M3C1B8090799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Young Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Choe, G., Park, J. et al. Graphene oxide-incorporated hydrogels for biomedical applications. Polym J 52, 823–837 (2020). https://doi.org/10.1038/s41428-020-0350-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0350-9

Further reading

Search

Quick links