Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Solution-processable ambipolar organic field-effect transistors with bilayer transport channels

Abstract

Ambipolar organic field-effect transistors (A-OFETs) allow a significant reduction in the complexity of organic integrated circuits (ICs) because they act as both n- and p-type transistors. In this paper, we report an efficient A-OFET based on the bilayer architecture of p-type poly(benzodithiophene(2-thienyl)-pyrrolopyrrole-dione) (PBDTTPPD) and n-type [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). By achieving the saturation condition of the dichloromethane (DCM) solvent for preparing the PCBM solution, we successfully obtained a complete bilayer of PCBM and PBDTTPPD and used it as a carrier transport layer in an A-OFET. The A-OFET exhibits clear bipolar transport and operates as an n-type and a p-type transistor in a single device. When a positive bias is applied between the gate electrode and the source electrode, the A-OFET serves as an n-type transistor with an n-channel generated for electron transport at the interface of PCBM and PBDTTPPD. On the other hand, it serves as a p-type transistor with a p-channel generated for hole transport at the interface between PBDTTPPD and SiO2 when a negative bias is applied. The bipolar transport is modulated by morphology control using a 1,8-diiodooctane (DIO) additive and the PBDTTPPD layer thickness. The optimized A-OFET shows reasonable carrier mobilities for an ambipolar transistor with an average electron mobility of 2.22 × 10−3 cm2 V−1 s−1 and an average hole mobility of 2.29 × 10−3 cm2 V−1 s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ni Z, Wang H, Dong H, Dang Y, Zhao Q, Zhang X, et al. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat Chem. 2019;11:271–7.

    Article  CAS  Google Scholar 

  2. Yi Z, Jiang Y, Xu L, Zhong C, Yang J, Wang Q, et al. Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high-gain inverters. Adv Mater. 2018;30:1801951.

    Article  Google Scholar 

  3. Shi K, Zhang W, Gao D, Zhang S, Lin Z, Zou Y, et al. Well-balanced ambipolar conjugated polymers featuring mild glass transition temperatures toward high-performance flexible field-effect transistors. Adv Mater. 2018;30:1705286.

    Article  Google Scholar 

  4. Lee J, Han aR, Kim J, Kim Y, Oh JH, Yang C. Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities. J Am Chem Soc. 2012;134:20713–21.

    Article  CAS  Google Scholar 

  5. Dell’Erba G, Luzio A, Natali D, Kim J, Khim D, Kim DY, et al. Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering. Appl Phys Lett. 2014;104:153303.

    Article  Google Scholar 

  6. Lao CS, Kuang Q, Wang ZL, Park M-C, Deng Y. Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Appl Phys Lett. 2007;90:262107.

    Article  Google Scholar 

  7. Wang J, Wang H, Yan X, Huang H, Jin D, Shi J, et al. Heterojunction ambipolar organic transistors fabricated by a two-step vacuum-deposition process. Adv Funct Mater. 2006;16:824–30.

    Article  CAS  Google Scholar 

  8. Shkunov M, Simms R, Heeney M, Tierney S, McCulloch I. Ambipolar field-effect transistors based on solution-processable blends of thieno[2,3-b]thiophene terthiophene polymer and methanofullerenes. Adv Mater. 2005;17:2608–12.

    Article  CAS  Google Scholar 

  9. Sun Q-J, Peng J, Chen W-H, She X-J, Liu J, Gao X, et al. Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric. Org Electron. 2016;34:118–23.

    Article  CAS  Google Scholar 

  10. Tang W, Huang Y, Han L, Liu R, Su Y, Guo X, et al. Recent progress in printable organic field effect transistors. J Mater Chem C. 2019;7:790–808.

    Article  CAS  Google Scholar 

  11. Sekitani T, Zschieschang U, Klauk H, Someya T. Flexible organic transistors and circuits with extreme bending stability. Nat Mater. 2010;9:1015–22.

    Article  CAS  Google Scholar 

  12. Yoo H, Ghittorelli M, Smits ECP, Gelinck GH, Lee H-K, Torricelli F, et al. Reconfigurable complementary logic circuits with ambipolar organic transistors. Sci Rep. 2016;6:35585.

    Article  CAS  Google Scholar 

  13. Zaumseil J, Sirringhaus H. Electron and ambipolar transport in organic field-effect transistors. Chem Rev. 2007;107:1296–323.

    Article  CAS  Google Scholar 

  14. Dong J, Yu P, Arabi SA, Wang J, He J, Jiang C. Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric iInterface control and very thin single crystal. Nanotechnology. 2016;27:275202.

    Article  Google Scholar 

  15. Biswas S, Yang Y, Schlepütz CM, Geva N, Headrick RL, Pindak R, et al. Spatial mapping of morphology and electronic properties of air-printed pentacene thin films. Adv Funct Mater. 2014;24:3907–16.

    Article  CAS  Google Scholar 

  16. Sharma a, van Oost F, Kemerink M, Bobbert Pa. Dimensionality of charge transport in organic field-effect transistors. Phys Rev B. 2012;85:1–6.

    Article  Google Scholar 

  17. Cho S, Lee J, Tong M, Seo JH, Yang C. Poly(diketopyrrolopyrrole-benzothiadiazole) with ambipolarity approaching 100% equivalency. Adv Funct Mater. 2011;21:1910–6.

    Article  CAS  Google Scholar 

  18. Yamane K, Yanagi H, Sawamoto A, Hotta S. Ambipolar organic light emitting field effect transistors with modified asymmetric electrodes. Appl Phys Lett. 2007;90:2005–8.

    Article  Google Scholar 

  19. Ahn N, Kwak K, Jang MS, Yoon H, Lee BY, Lee JK, et al. Trapped charge-driven degradation of perovskite solar cells. Nat Commun. 2016;7:1–9.

    Article  Google Scholar 

  20. Noever SJ, Fischer S, Nickel B. Dual channel operation upon n-channel percolation in a pentacene-C 60 ambipolar organic thin film transistor. Adv Mater. 2013;25:2147–51.

    Article  CAS  Google Scholar 

  21. Tamilavan V, Roh KH, Agneeswari R, Lee DY, Cho S, Jin Y, et al. Pyrrolo[3,4-c]pyrrole-1,3-dione-based large band gap polymers containing benzodithiophene derivatives for highly efficient simple structured polymer solar cells. J Polym Sci Part A. 2014;52:3564–74.

    CAS  Google Scholar 

  22. Lee J, Jung YK, Lee DY, Jang J-W, Cho S, Son S, et al. Enhanced efficiency of bilayer polymer solar cells by the solvent treatment method. Synth Met. 2015;199:408–12.

    Article  CAS  Google Scholar 

  23. Shi JW, Wang HB, Song D, Tian HK, Geng YH, Yan DH. n-Channel, ambipolar, and p-channel organic heterojunction transistors fabricated with various film morphologies. Adv Funct Mater. 2007;17:397–400.

    Article  CAS  Google Scholar 

  24. Tamilavan V, Liu Y, Shin I, Lee J, Jeong JH, Jung YK, et al. Effects of replacing benzodithiophene with a benzothiadiazole derivative on an efficient wide band-gap benzodithiophene-alt-pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione copolymer. J Photochem Photobiol A. 2019;368:162–7.

    Article  CAS  Google Scholar 

  25. Song X, Gasparini N, Nahid MM, Paleti SHK, Li C, Li W, et al. Efficient DPP donor and nonfullerene acceptor organic solar cells with high photon-to-current ratio and low energetic loss. Adv Funct Mater. 2019;29:1902441.

    Article  Google Scholar 

  26. Zhang H, Zhang F, Sun J, Zhang M, Hu Y, Lou Z, et al. Solution-processed organic field-effect transistors with cross-linked poly(4-vinylphenol)/polyvinyl alcohol bilayer dielectrics. Appl Surf Sci. 2019;478:699–707.

    Article  CAS  Google Scholar 

  27. Fukuda T, Sato A. Fluorene bilayer for polymer organic light-emitting diode using efficient ionization method for atomized droplet. Org Electron. 2015;26:1–7.

    Article  CAS  Google Scholar 

  28. Xie S, Wang J, Wang R, Zhang D, Zhou H, Zhang Y, et al. Effects of processing additives in non-fullerene organic bulk heterojunction solar cells with efficiency. Chin Chem Lett. 2019;30:217–21.

    Article  CAS  Google Scholar 

  29. Liao H-C, Ho C-C, Chang C-Y, Jao M-H, Darling SB, Su W-F. Additives for morphology control in high-efficiency organic solar cells. Mater Today. 2013;16:326–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Grant of Pukyong National University (2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Ram Lee or Sung Heum Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.Y., Tamilavan, V., Shin, I. et al. Solution-processable ambipolar organic field-effect transistors with bilayer transport channels. Polym J 52, 581–588 (2020). https://doi.org/10.1038/s41428-020-0313-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0313-1

Search

Quick links