A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state Li battery

Abstract

Electrochemical and ion-transport properties of polymer blend electrolytes comprising poly(ethylene carbonate) (PEC), poly(trimethylene carbonate) (PTMC) and lithium bis(fluorosulfonyl) imide (LiFSI) were studied in this work, and the electrolyte with the best blend composition was applied in all-solid-state Li batteries. The ionic conductivity of both PEC and PTMC single-polymer electrolytes increased with increasing Li salt concentration. All PEC and PTMC blend electrolytes show ionic conductivities on the order of 10−5 S cm−1 at 50 °C, and the ionic conductivities increase slightly with increasing PEC contents. The PEC6PTMC4-LiFSI 150 mol% electrolyte demonstrated better Li/electrolyte electrochemical and interfacial stability than that of PEC and PTMC single-polymer electrolytes and maintained a polarization as low as 5 mV for up to 200 h during Li metal plating and stripping. A Li|SPE|LFP cell with the PEC6PTMC4-LiFSI 150 mol% electrolyte exhibited reversible charge/discharge capacities close to 150 mAh g−1 at 50 °C and a C/10 rate, which is 88% of the theoretical value (170 mAh g−1).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.

    CAS  Article  Google Scholar 

  2. 2.

    Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:2–7.

    Article  Google Scholar 

  3. 3.

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. A lithium superionic conductor. Nat Mater. 2011;10:682–6.

    CAS  Article  Google Scholar 

  4. 4.

    Li J, Ma C, Chi M, Liang C, Dudney NJ. Solid electrolyte: The key for high-voltage lithium batteries. Adv Energy Mater. 2015;5:1–6.

    Google Scholar 

  5. 5.

    Fu X, Yu D, Zhou J, Li S, Gao X, Han Y, Qi P, Feng X, Wang B. Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm. 2016;18:4236–58.

    CAS  Article  Google Scholar 

  6. 6.

    Kim HW, Manikandan P, Lim YJ, Kim JH, Nam SC, Kim Y. Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J Mater Chem A. 2016;4:17025–32.

    CAS  Article  Google Scholar 

  7. 7.

    Kim JK, Lim YJ, Kim H, Cho GB, Kim Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ Sci. 2015;8:3589–96.

    CAS  Article  Google Scholar 

  8. 8.

    Santhanagopalan D, Qian D, McGilvray T, Wang Z, Wang F, Camino F, Graetz J, Dudney N, Meng YS. Interface limited lithium transport in solid-state batteries. J Phys Chem Lett. 2014;5:298–303.

    CAS  Article  Google Scholar 

  9. 9.

    Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Polymer-based organic batteries. Chem Rev. 2016;116:9438–84.

    CAS  Article  Google Scholar 

  10. 10.

    Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B. Polymer electrolytes: present, past and future. Electrochim Acta. 2011;57:4–13.

    Article  Google Scholar 

  11. 11.

    Hallinan DT, Balsara NP. Polymer electrolytes. Annu Rev Mater Res. 2013;43:503–25.

    CAS  Article  Google Scholar 

  12. 12.

    Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, Armand M, Zhou Z. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev. 2017;46:797–815.

    CAS  Article  Google Scholar 

  13. 13.

    Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polym (Guildf). 1973;14:589.

    CAS  Article  Google Scholar 

  14. 14.

    Takeoka S, Ohno H, Tsuchida E. Recent advancement of ion-conductive polymers. Polym Adv Technol. 1993;4:53–73.

    CAS  Article  Google Scholar 

  15. 15.

    Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B. Transport and interfacial properties of composite polymer electrolytes. Electrochim Acta. 2000;45:1481–90.

    CAS  Article  Google Scholar 

  16. 16.

    Armand MB. Polymer electrolytes. Annu Rev Mater Res. 1986;16:245–61.

    CAS  Article  Google Scholar 

  17. 17.

    Munshi MZA, Owens BB, Measurement SN. of Li ion transport number in poly(ethylene oxide)-LiX complexes. Polym J. 1988;20:597–602.

    CAS  Article  Google Scholar 

  18. 18.

    Zhang X, Fedkiw PS. Ionic transport and interfacial stability of Sulfonate-modified fumed silicas as nanocomposite electrolytes. J Electrochem Soc. 2005;152:A2413–20.

    CAS  Article  Google Scholar 

  19. 19.

    Tominaga Y, Yamazaki K, Nanthana V. Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. J Electrochem Soc. 2015;162:3133–6.

    Article  Google Scholar 

  20. 20.

    Tominaga Y, Yamazaki K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem Commun. 2014;50:4448–50.

    CAS  Article  Google Scholar 

  21. 21.

    Mindemark J, Sun B, Törmä E, Brandell D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sources. 2015;298:166–70.

    CAS  Article  Google Scholar 

  22. 22.

    Sun B, Mindemark J, Edström K, Brandell D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ion. 2014;262:738–42.

    CAS  Article  Google Scholar 

  23. 23.

    Kimura K, Motomatsu J, Tominaga Y. Highly concentrated polycarbonate-based solid polymer electrolytes having extraordinary electrochemical stability. J Polym Sci Part B Polym Phys. 2016;54:2442–7.

    CAS  Article  Google Scholar 

  24. 24.

    Whang W-T, Lu C-L. Effects of polymer matrix and salt concentration on the ionic conductivity of plasticized polymer electrolytes. J Appl Polym Sci. 1995;56:1635–43.

    CAS  Article  Google Scholar 

  25. 25.

    Rodrigues LC, Silva MM, Smith MJ. Synthesis and characterization of amorphous poly(ethylene oxide)/poly(trimethylene carbonate) polymer blend electrolytes. Electrochim Acta. 2012;86:339–45.

    CAS  Article  Google Scholar 

  26. 26.

    Li Z, Mogensen R, Mindemark J, Bowden T, Brandell D, Tominaga Y. Ion-conductive and thermal properties of asynergistic poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte. Macromol Rapid Commun. 2018;39:e1800146.

    Article  Google Scholar 

  27. 27.

    Kim H, Wu F, Lee JT, Nitta N, Lin HT, Oschatz M, Cho WI, Kaskel S, Borodin O, Yushin G. In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv Energy Mater. 2015;5:1–8.

    Google Scholar 

  28. 28.

    Judez X, Zhang H, Li C, González-Marcos JA, Zhou Z, Armand M, Rodriguez-Martinez LM. Lithium bis(fluorosulfonyl)imide-poly(ethylene oxide) polymer electrolyte for all solid-state Li–S cell. J Phys Chem Lett. 2017;8:1956–60.

    CAS  Article  Google Scholar 

  29. 29.

    Evans J, Vincent CA, Bruce PG. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer. 1987;28:2324–8.

    CAS  Article  Google Scholar 

  30. 30.

    Ratner MA, Shriver DF. Ion transport in solvent-free polymers. Chem Rev. 1988;88:109–24.

    CAS  Article  Google Scholar 

  31. 31.

    Kimura K, Motomatsu J, Tominaga Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes. J Phys Chem C. 2016;120:12385–91.

    CAS  Article  Google Scholar 

  32. 32.

    Li Z, Matsumoto H, Tominaga Y. Composite poly(ethylene carbonate) electrolytes with electrospun silica nanofibers. Polym Adv Technol. 2018;29:820–4.

    CAS  Article  Google Scholar 

  33. 33.

    Morioka T, Nakano K, Tominaga Y. Ion-conductive properties of a polymer electrolyte based on ethylene carbonate/ethylene oxide random copolymer. Macromol Rapid Commun. 2017;38:1–5.

    Article  Google Scholar 

  34. 34.

    Kimura K, Matsumoto H, Hassoun J, Panero S, Scrosati B, Tominaga Y. A quaternary poly(ethylene carbonate)-lithium bis(trifluoromethanesulfonyl)imide-ionic liquid-silica fiber composite polymer electrolyte for lithium batteries. Electrochim Acta. 2015;175:134–40.

    CAS  Article  Google Scholar 

  35. 35.

    Kozen AC, Lin CF, Zhao O, Lee SB, Rubloff GW, Noked M. Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase. Chem Mater. 2017;29:6298–307.

    CAS  Article  Google Scholar 

  36. 36.

    Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010;55:6332–41.

    CAS  Article  Google Scholar 

  37. 37.

    Aurbach D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources. 2000;89:206–18.

    CAS  Article  Google Scholar 

  38. 38.

    Sun B, Xu C, Mindemark J, Gustafsson T, Edström K, Brandell D. At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. J Mater Chem A. 2015;3:13994–4000.

    CAS  Article  Google Scholar 

  39. 39.

    Kimura K, Yajima M, Tominaga Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem Commun. 2016;66:46–8.

    CAS  Article  Google Scholar 

  40. 40.

    Smart MC, Lucht BL, Ratnakumar BV. Electrochemical characteristics of MCMB and LiNixCo1−xO2 electrodes in electrolytes with stabilizing additives. J Electrochem Soc. 2008;155:A577–68.

    Article  Google Scholar 

  41. 41.

    Li W, Xiao A, Lucht BL, Smart MC, Ratnakumar BV. Surface analysis of electrodes from cells containing electrolytes with stabilizing additives exposed to high temperature. J Electrochem Soc. 2008;155:A648.

    CAS  Article  Google Scholar 

  42. 42.

    Sun B, Mindemark J, Edström K, Brandell D. Realization of high performance polycarbonate-based Li polymer batteries. Electrochem Commun. 2015;52:71–4.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by a Grant-in-Aid for Scientific Research (B) from JSPS KAKENHI (No. 16H04199), Japan, and STandUP for Energy, Sweden.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoichi Tominaga.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Mindemark, J., Brandell, D. et al. A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state Li battery. Polym J 51, 753–760 (2019). https://doi.org/10.1038/s41428-019-0184-5

Download citation

Further reading