Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of METTL3 in macrophages provides protection against intestinal inflammation

Abstract

Inflammatory bowel disease (IBD) is prevalent, and no satisfactory therapeutic options are available because the mechanisms underlying its development are poorly understood. In this study, we discovered that increased expression of methyltransferase-like 3 (METTL3) in macrophages was correlated with the development of colitis and that depletion of METTL3 in macrophages protected mice against dextran sodium sulfate (DSS)-induced colitis. Mechanistic characterization indicated that METTL3 depletion increased the YTHDF3-mediated expression of phosphoglycolate phosphatase (PGP), which resulted in glucose metabolism reprogramming and the suppression of CD4+ T helper 1 (Th1) cell differentiation. Further analysis revealed that glucose metabolism contributed to the ability of METTL3 depletion to ameliorate colitis symptoms. In addition, we developed two potent small molecule METTL3 inhibitors, namely, F039-0002 and 7460-0250, that strongly ameliorated DSS-induced colitis. Overall, our study suggests that METTL3 plays crucial roles in the progression of colitis and highlights the potential of targeting METTL3 to attenuate intestinal inflammation for the treatment of colitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The mRNA sequencing data generated during this study have been deposited in the GEO database under the accession number GSE217269. All the data in this article are available from the corresponding authors upon reasonable request.

References

  1. Windsor JW, Kaplan GG. Evolving epidemiology of IBD. Curr Gastroenterol Rep. 2019;21:40.

    Article  PubMed  Google Scholar 

  2. Roda G, Chien Ng S, Kotze PG, Argollo M, Panaccione R, Spinelli A, et al. Crohn’s disease. Nat Rev Dis Prim. 2020;6:22.

    Article  PubMed  Google Scholar 

  3. Seyed Tabib NS, Madgwick M, Sudhakar P, Verstockt B, Korcsmaros T, Vermeire S. Big data in IBD: big progress for clinical practice. Gut. 2020;69:1520–32.

    Article  PubMed  Google Scholar 

  4. Nadeem MS, Kumar V, Al-Abbasi FA, Kamal MA, Anwar F. Risk of colorectal cancer in inflammatory bowel diseases. Semin Cancer Biol. 2020;64:51–60.

    Article  PubMed  Google Scholar 

  5. Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Investig. 2005;115:66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell. 2010;140:859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mowat AM. To respond or not to respond - a personal perspective of intestinal tolerance. Nat Rev Immunol. 2018;18:405–15.

    Article  CAS  PubMed  Google Scholar 

  8. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154:186–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47.

    Article  CAS  PubMed  Google Scholar 

  10. Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol. 2015;194:6082–9.

    Article  CAS  PubMed  Google Scholar 

  11. Na YR, Je S, Seok SH. Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett. 2018;413:46–58.

    Article  CAS  PubMed  Google Scholar 

  12. Ma S, Zhang J, Liu H, Li S, Wang Q. The role of tissue-resident macrophages in the development and treatment of inflammatory bowel disease. Front Cell Dev Biol. 2022;10:896591.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974;71:3971–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang X, Liu B, Nie Z, Duan L, Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, et al. Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem. 2013;288:33292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–5.

    Article  CAS  PubMed  Google Scholar 

  19. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.

    Article  CAS  PubMed  Google Scholar 

  22. Huang H, Weng H, Chen J. The biogenesis and precise control of RNA m(6)A methylation. Trends Genet. 2020;36:44–52.

    Article  CAS  PubMed  Google Scholar 

  23. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020;38:79–96.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019;35:677–91.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chung JY, Tang PC, Chan MK, Xue VW, Huang XR, Ng CS, et al. Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma. Nat Commun. 2023;14:1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Collard F, Baldin F, Gerin I, Bolsée J, Noël G, Graff J, et al. A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol. 2016;12:601–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016;63:306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hazel K, O’Connor A. Emerging treatments for inflammatory bowel disease. Ther Adv Chronic Dis. 2020;11:2040622319899297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olén O, Erichsen R, Sachs MC, Pedersen L, Halfvarson J, Askling J, et al. Colorectal cancer in Crohn’s disease: a Scandinavian population-based cohort study. lancet Gastroenterol Hepatol. 2020;5:475–84.

    Article  PubMed  Google Scholar 

  32. Williams NC, O’Neill LAJ. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front Immunol. 2018;9:141.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Elliott MR, Koster KM, Murphy PS. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol. 2017;198:1387–94.

    Article  CAS  PubMed  Google Scholar 

  34. Muller PA, Matheis F, Mucida D. Gut macrophages: key players in intestinal immunity and tissue physiology. Curr Opin Immunol. 2020;62:54–61.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Ji Y, Feng P, Liu R, Li G, Zheng J, et al. The m6A reader IGF2BP2 Regulates macrophage phenotypic activation and inflammatory diseases by stabilizing TSC1 and PPARγ. Adv Sci. 2021;8:2100209.

    Article  CAS  Google Scholar 

  36. Dong L, Chen C, Zhang Y, Guo P, Wang Z, Li J, et al. The loss of RNA N(6)-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8(+) T cell dysfunction and tumor growth. Cancer Cell. 2021;39:945–57.e10.

    Article  CAS  PubMed  Google Scholar 

  37. Tong J, Wang X, Liu Y, Ren X, Wang A, Chen Z, et al. Pooled CRISPR screening identifies m(6)A as a positive regulator of macrophage activation. Sci Adv. 2021;7:eabd4742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang L, Wu G, Wu Q, Peng L, Yuan L. METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. Cell Death Discov. 2022;8:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate lymphoid cells in intestinal homeostasis and inflammatory bowel disease. Int J Mol Sci. 2021;22:7618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Xu R, Gu H, Zhang E, Qu J, Cao W, et al. Metabolic reprogramming in macrophage responses. Biomark Res. 2021;9:1.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Daneshmandi S, Cassel T, Higashi RM, Fan TW, Seth P. 6-Phosphogluconate dehydrogenase (6PGD), a key checkpoint in reprogramming of regulatory T cells metabolism and function. eLife. 2021;10:e67476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He J, Song Y, Li G, Xiao P, Liu Y, Xue Y, et al. Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation. J Clin Investig. 2019;129:3877–93.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang Z, Li Q, Wang X, Jiang X, Zhao D, Lin X, et al. C-type lectin receptor LSECtin-mediated apoptotic cell clearance by macrophages directs intestinal repair in experimental colitis. Proc Natl Acad Sci USA. 2018;115:11054–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boivin G, Faget J, Ancey PB, Gkasti A, Mussard J, Engblom C, et al. Durable and controlled depletion of neutrophils in mice. Nat Commun. 2020;11:2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;40:365–78.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Mrs. Fangli Gao from the Fourth Military Medical University for the careful breeding and reproduction of the mice. This study was supported by grants from the National Natural Science Foundation of China (grants 81630069 and 31771439 to YAG, 82173046 to ZR, and 31801128 to YHL, and 82173162 to ZX), the Program for Ph.D. Starting Research Funding from Xinxiang Medical University (grant 505249 to YHL), the Fund of State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers (grant CBSKL2022KF03 to YHL), and the National Key Research and Development Program (grant 2016YFC1303200 to ZR). The funders had no role in the study design, data collection and analysis, decision to publish, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

HLY, ZJ, XZ, RZ and AGY conceived the research, designed the study, interpreted the data and wrote the manuscript; HLY, ZJ, XZ, WJZ, YHY, MHZ, XFZ, YNL and YRP performed the experiments; HLY, ZJ, XZ and YX analyzed the data; and RZ and AGY are the co-senior authors who directed the research.

Corresponding authors

Correspondence to Angang Yang or Rui Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Ju, Z., Zhang, X. et al. Inhibition of METTL3 in macrophages provides protection against intestinal inflammation. Cell Mol Immunol (2024). https://doi.org/10.1038/s41423-024-01156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41423-024-01156-8

Keywords

Search

Quick links