Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunopeptidome mining reveals a novel ERS-induced target in T1D

Abstract

Autoreactive CD8+ T cells play a key role in type 1 diabetes (T1D), but the antigen spectrum that activates autoreactive CD8+ T cells remains unclear. Endoplasmic reticulum stress (ERS) has been implicated in β-cell autoantigen generation. Here, we analyzed the major histocompatibility complex class I (MHC-I)-associated immunopeptidome (MIP) of islet β-cells under steady and ERS conditions and found that ERS reshaped the MIP of β-cells and promoted the MHC-I presentation of a panel of conventional self-peptides. Among them, OTUB258-66 showed immunodominance, and the corresponding autoreactive CD8+ T cells were diabetogenic in nonobese diabetic (NOD) mice. High glucose intake upregulated pancreatic OTUB2 expression and amplified the OTUB258-66-specific CD8+ T-cell response in NOD mice. Repeated OTUB258-66 administration significantly reduced the incidence of T1D in NOD mice. Interestingly, peripheral blood mononuclear cells (PBMCs) from patients with T1D, but not from healthy controls, showed a positive IFN-γ response to human OTUB2 peptides. This study provides not only a new explanation for the role of ERS in promoting β-cell-targeted autoimmunity but also a potential target for the prevention and treatment of T1D. The data are available via ProteomeXchange with the identifier PXD041227.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data that support the findings of this study are available within the source data and supplementary information files. The raw mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD041227.

References

  1. Norris JM, Johnson RK, Stene LC. Type 1 diabetes—early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8:226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. von Scholten BJ, Kreiner FF, Gough SCL, von Herrath M. Current and future therapies for type 1 diabetes. Diabetologia. 2021;64:1037–48.

    Article  Google Scholar 

  3. Pathiraja V, Kuehlich JP, Campbell PD, Krishnamurthy B, Loudovaris T, Coates PT, et al. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes 2015;64:172–82.

    Article  CAS  PubMed  Google Scholar 

  4. De Riva A, Varley MC, Bluck LJ, Cooke A, Deery MJ, Busch R. Accelerated turnover of MHC class II molecules in nonobese diabetic mice is developmentally and environmentally regulated in vivo and dispensable for autoimmunity. J Immunol. 2013;190:5961–71.

    Article  PubMed  Google Scholar 

  5. Antoniou AN, Elliott J, Rosmarakis E, Dyson PJ. MHC class II Ab diabetogenic residue 57 Asp/non-Asp dimorphism influences T-cell recognition and selection. Immunogenetics. 1998;47:218–25.

    Article  CAS  PubMed  Google Scholar 

  6. Carrero JA, McCarthy DP, Ferris ST, Wan X, Hu H, Zinselmeyer BH, et al. Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proc Natl Acad Sci USA. 2017;114:E10418–e27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zinselmeyer BH, Vomund AN, Saunders BT, Johnson MW, Carrero JA, Unanue ER. The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. Diabetologia. 2018;61:1374–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pugliese A. Autoreactive T cells in type 1 diabetes. J Clin Investig. 2017;127:2881–91.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, et al. Islet-reactive CD8(+) T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol. 2018;3:eaao4013.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Tsai S, Shameli A, Yamanouchi J, Alkemade G, Santamaria P. In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8+ T cell inflammation. Proc Natl Acad Sci USA. 2010;107:9317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Noble JA, Valdes AM, Varney MD, Carlson JA, Moonsamy P, Fear AL, et al. HLA class I and genetic susceptibility to type 1 diabetes: results from the Type 1. Diabetes Genet Consort Diabetes 2010;59:2972–9.

    CAS  Google Scholar 

  12. Yoneda R, Yokono K, Nagata M, Tominaga Y, Moriyama H, Tsukamoto K, et al. CD8 cytotoxic T-cell clone rapidly transfers autoimmune diabetes in very young NOD and MHC class I-compatible scid mice. Diabetologia. 1997;40:1044–52.

    Article  CAS  PubMed  Google Scholar 

  13. de Verteuil D, Granados DP, Thibault P, Perreault C. Origin and plasticity of MHC I-associated self peptides. Autoimmun Rev. 2012;11:627–35.

    Article  PubMed  Google Scholar 

  14. Perreault C. The origin and role of MHC class I-associated self-peptides. Prog Mol Biol Transl Sci. 2010;92:41–60.

    Article  CAS  PubMed  Google Scholar 

  15. So JS. Roles of Endoplasmic Reticulum Stress in Immune Responses. Molecules cells. 2018;41:705–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu H, Wang H, Chen D, Gu C, Huang J, Mi K. Endoplasmic reticulum stress inhibits 3D Matrigel-induced vasculogenic mimicry of breast cancer cells via TGF-beta1/Smad2/3 and beta-catenin signaling. FEBS open bio. 2021;11:2607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yong J, Johnson JD, Arvan P, Han J, Kaufman RJ. Therapeutic opportunities for pancreatic beta-cell ER stress in diabetes mellitus. Nat Rev Endocrinol. 2021;17:455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008;29:42–61.

    Article  CAS  PubMed  Google Scholar 

  19. Horwitz MS, Ilic A, Fine C, Balasa B, Sarvetnick N. Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells. Clin Immunol. 2004;110:134–44.

    Article  CAS  PubMed  Google Scholar 

  20. Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976;193:415–7.

    Article  CAS  PubMed  Google Scholar 

  21. Delmastro MM, Piganelli JD. Oxidative stress and redox modulation potential in type 1 diabetes. Clin Dev Immunol. 2011;2011:593863.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Karunakaran U, Elumalai S, Moon JS, Jeon JH, Kim ND, Park KG, et al. Myricetin Protects Against High Glucose-Induced beta-Cell Apoptosis by Attenuating Endoplasmic Reticulum Stress via Inactivation of Cyclin-Dependent Kinase 5. Diabetes Metab J. 2019;43:192–205.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jiang Z, Woda BA. Cytokine gene expression in the islets of the diabetic Biobreeding/Worcester rat. J Immunol. 1991;146:2990–4.

    Article  CAS  PubMed  Google Scholar 

  24. Lamb MM, Frederiksen B, Seifert JA, Kroehl M, Rewers M, Norris JM. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young. Diabetologia. 2015;58:2027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Wang L, Meng G, Chen X, Yang S, Zhang M, et al. Sustained high glucose intake accelerates type 1 diabetes in NOD mice. Front Endocrinol (Lausanne). 2022;13:1037822.

    Article  PubMed  Google Scholar 

  26. Marre ML, Profozich JL, Coneybeer JT, Geng X, Bertera S, Ford MJ, et al. Inherent ER stress in pancreatic islet beta cells causes self-recognition by autoreactive T cells in type 1 diabetes. J Autoimmun. 2016;72:33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kracht MJ, van Lummel M, Nikolic T, Joosten AM, Laban S, van der Slik AR, et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat Med. 2017;23:501–7.

    Article  CAS  PubMed  Google Scholar 

  28. Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351:711–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Li X, Yang S, Chen X, Li J, Wang S, et al. Proteomic identification of MHC class I-associated peptidome derived from non-obese diabetic mouse thymus and pancreas. J Proteom. 2023;270:104746.

    Article  CAS  Google Scholar 

  30. Houeiss P, Boitard C, Luce S. Preclinical models to evaluate the human response to autoantigen and antigen-specific immunotherapy in human type 1 diabetes. Front Endocrinol (Lausanne). 2022;13:883000.

    Article  PubMed  Google Scholar 

  31. Unanue ER. Antigen presentation in the autoimmune diabetes of the NOD mouse. Annu Rev Immunol. 2014;32:579–608.

    Article  CAS  PubMed  Google Scholar 

  32. Takaki T, Marron MP, Mathews CE, Guttmann ST, Bottino R, Trucco M, et al. HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol. 2006;176:3257–65.

    Article  CAS  PubMed  Google Scholar 

  33. Ellis JM, Henson V, Slack R, Ng J, Hartzman RJ, Katovich Hurley C. Frequencies of HLA-A2 alleles in five U.S. population groups. Predominance Of A*02011 and identification of HLA-A*0231. Hum Immunol. 2000;61:334–40.

    Article  CAS  PubMed  Google Scholar 

  34. Fennessy M, Metcalfe K, Hitman GA, Niven M, Biro PA, Tuomilehto J, et al. A gene in the HLA class I region contributes to susceptibility to IDDM in the Finnish population. Childhood Diabetes in Finland (DiMe) Study Group. Diabetologia. 1994;37:937–44.

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez-Duque S, Azoury ME, Colli ML, Afonso G, Turatsinze JV, Nigi L, et al. Conventional and neo-antigenic peptides presented by beta cells are targeted by circulating naive CD8+ T cells in type 1 diabetic and healthy donors. Cell Metab. 2018;28:946–60.e6.

    Article  CAS  PubMed  Google Scholar 

  36. Hamaguchi K, Gaskins HR, Leiter EH. NIT-1, a pancreatic beta-cell line established from a transgenic NOD/Lt mouse. Diabetes. 1991;40:842–9.

    Article  CAS  PubMed  Google Scholar 

  37. Wen X, Zhu H, Li L, Li Y, Wang M, Liu J, et al. Transplantation of NIT-1 cells expressing pD-L1 for treatment of streptozotocin-induced diabetes. Transplantation. 2008;86:1596–602.

    Article  CAS  PubMed  Google Scholar 

  38. Stephens LA, Thomas HE, Kay TW. Protection of NIT-1 pancreatic beta-cells from immune attack by inhibition of NF-kappaB. J Autoimmun. 1997;10:293–8.

    Article  CAS  PubMed  Google Scholar 

  39. Marré ML, Piganelli JD. Environmental factors contribute to β cell endoplasmic reticulum stress and neo-antigen formation in type 1 diabetes. Front Endocrinol (Lausanne). 2017;8:262.

    Article  PubMed  Google Scholar 

  40. Andre I, Gonzalez A, Wang B, Katz J, Benoist C, Mathis D. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci USA. 1996;93:2260–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prinz JC. Antigen processing, presentation, and tolerance: role in autoimmune skin diseases. J investig Dermatol. 2022;142:750–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA Jr, Gabibov AG. MHC Class II presentation in autoimmunity. Cells 2023;12:314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dudek NL, Tan CT, Gorasia DG, Croft NP, Illing PT, Purcell AW. Constitutive and inflammatory immunopeptidome of pancreatic beta-cells. Diabetes. 2012;61:3018–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Skowera A, Ellis RJ, Varela-Calviño R, Arif S, Huang GC, Van-Krinks C, et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Investig. 2008;118:3390–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wong FS, Karttunen J, Dumont C, Wen L, Visintin I, Pilip IM, et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med. 1999;5:1026–31.

    Article  CAS  PubMed  Google Scholar 

  46. Leon S, Haguenauer-Tsapis R. Ubiquitin ligase adaptors: regulators of ubiquitylation and endocytosis of plasma membrane proteins. Exp cell Res. 2009;315:1574–83.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Z, Du J, Wang S, Shao L, Jin K, Li F, et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ. Mol cell. 2019;73:7–21.e7.

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Cheng D, Zhu M, Yu H, Pan Z, Liu L, et al. OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer. Theranostics. 2019;9:179–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chang W, Luo Q, Wu X, Nan Y, Zhao P, Zhang L, et al. OTUB2 exerts tumor-suppressive roles via STAT1-mediated CALML3 activation and increased phosphatidylserine synthesis. Cell Rep. 2022;41:111561.

    Article  CAS  PubMed  Google Scholar 

  50. Beck A, Vinik Y, Shatz-Azoulay H, Isaac R, Streim S, Jona G, et al. Otubain 2 is a novel promoter of beta cell survival as revealed by siRNA high-throughput screens of human pancreatic islets. Diabetologia. 2013;56:1317–26.

    Article  CAS  PubMed  Google Scholar 

  51. Thomaidou S, Kracht MJL, van der Slik A, Laban S, de Koning EJ, Carlotti F, et al. β-cell stress shapes CTL immune recognition of preproinsulin signal peptide by posttranscriptional regulation of endoplasmic reticulum aminopeptidase 1. Diabetes. 2020;69:670–80.

    Article  CAS  PubMed  Google Scholar 

  52. Loaiza Naranjo JD, Bergot AS, Buckle I, Hamilton-Williams EE. A question of tolerance-antigen-specific immunotherapy for type 1 diabetes. Curr diabetes Rep. 2020;20:70.

    Article  CAS  Google Scholar 

  53. Zheng L, Li J, Lenardo M. Restimulation-induced cell death: new medical and research perspectives. Immunological Rev. 2017;277:44–60.

    Article  CAS  Google Scholar 

  54. Cho HI, Barrios K, Lee YR, Linowski AK, Celis E. BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunol, immunotherapy: Cii 2013;62:787–99.

    Article  CAS  Google Scholar 

  55. Zhang M, Wang S, Guo B, Meng G, Shu C, Mai W, et al. An altered CD8(+) T cell epitope of insulin prevents type 1 diabetes in humanized NOD mice. Cell Mol Immunol. 2019;16:590–601.

    Article  CAS  PubMed  Google Scholar 

  56. Chen W, Frank ME, Jin W, Wahl SM. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity. 2001;14:715–25.

    Article  CAS  PubMed  Google Scholar 

  57. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Investig. 2002;109:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol. 2008;9:632–40.

    Article  CAS  PubMed  Google Scholar 

  60. Clement CC, Osan J, Buque A, Nanaware PP, Chang YC, Perino G, et al. PDIA3 epitope-driven immune autoreactivity contributes to hepatic damage in type 2 diabetes. Sci Immunol. 2022;7:eabl3795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clement CC, Nanaware PP, Yamazaki T, Negroni MP, Ramesh K, Morozova K, et al. Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity. 2021;54:721–36.e10.

    Article  CAS  PubMed  Google Scholar 

  62. Bassani-Sternberg M, Barnea E, Beer I, Avivi I, Katz T, Admon A. Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci USA. 2010;107:18769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schuster H, Shao W, Weiss T, Pedrioli PGA, Roth P, Weller M, et al. A tissue-based draft map of the murine MHC class I immunopeptidome. Sci data. 2018;5:180157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Laumont CM, Daouda T, Laverdure JP, Bonneil É, Caron-Lizotte O, Hardy MP, et al. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat Commun. 2016;7:10238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Toprak UH, Gillet LC, Maiolica A, Navarro P, Leitner A, Aebersold R. Conserved peptide fragmentation as a benchmarking tool for mass spectrometers and a discriminating feature for targeted proteomics. Mol Cell Proteom: Mcp 2014;13:2056–71.

    Article  CAS  PubMed  Google Scholar 

  66. Son YI, Egawa S, Tatsumi T, Redlinger RE Jr, Kalinski P, Kanto T. A novel bulk-culture method for generating mature dendritic cells from mouse bone marrow cells. J immunological methods. 2002;262:145–57.

    Article  CAS  PubMed  Google Scholar 

  67. Trembleau S, Penna G, Gregori S, Chapman HD, Serreze DV, Magram J, et al. Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J Immunol. 1999;163:2960–8.

    Article  CAS  PubMed  Google Scholar 

  68. Tario JD Jr., Chen GL, Hahn TE, Pan D, Furlage RL, Zhang Y, et al. Dextramer reagents are effective tools for quantifying CMV antigen-specific T cells from peripheral blood samples. Cytom Part B, Clin Cytom. 2015;88:6–20.

    Article  Google Scholar 

  69. Dolton G, Lissina A, Skowera A, Ladell K, Tungatt K, Jones E, et al. Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clin Exp Immunol. 2014;177:47–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jedema I, van der Werff NM, Barge RM, Willemze R, Falkenburg JH. New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood. 2004;103:2677–82.

    Article  CAS  PubMed  Google Scholar 

  71. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, et al. Identification of cells initiating human melanomas. Nature. 2008;451:345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Posch C, Moslehi H, Feeney L, Green GA, Ebaee A, Feichtenschlager V, et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc Natl Acad Sci USA. 2013;110:4015–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baek JH, Lee WJ, Lee BW, Kim SK, Kim G, Jin SM, et al. Age at diagnosis and the risk of diabetic nephropathy in young patients with type 1 diabetes mellitus. Diabetes Metab J. 2021;45:46–54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82071825 and No. 81871301), the National Key Research and Development Program (No. 2016YFA0502204) and the Shandong Provincial Natural Science Fund (ZR2023MH201). We also thank Quan Zhou, Mingfu Ye and Xiaojun Peng (PTM-Biolabs, China) for their assistance in MS data analysis.

Author information

Authors and Affiliations

Authors

Contributions

Lina Wang, Shushu Yang and Gaohui Zhu designed and carried out the experiments and drafted the manuscript; Jie Li and Xiangqian Li performed the flow cytometry staining and data analysis; Gang Meng and Xiaoling Chen performed the HE and immunohistochemical staining of paraffin-embedded pancreas sections; Mengjun Zhang prepared the biological samples and isolated the MHC I-peptide complexes; Shufeng Wang analyzed the MS data and predicted the potential HLA-A*0201-restricted human OTUB2 peptides; Yu Pan collected the blood of all the subjects and performed the human IFN-γ ELISPOT; Yi Huang performed critical revision of the article for important intellectual content; Li Wang conceived the original ideas, designed the project, interpreted the results, evaluated the data and wrote the manuscript; Yuzhang Wu supervised and managed the research process, completed the manuscript and provided research funds. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Li Wang or Yuzhang Wu.

Ethics declarations

Competing interests

The authors declare no competing interests. Yuzhang Wu is an editorial board member of Cellular & Molecular Immunology, but he has not been involved in the peer review or the decision-making of the article.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the Army Medical University (Third Military Medical University) and Institutional Review Board of Children’s Hospital of Chongqing Medical University, and informed consent was obtained from all participants in this study.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, S., Zhu, G. et al. Immunopeptidome mining reveals a novel ERS-induced target in T1D. Cell Mol Immunol (2024). https://doi.org/10.1038/s41423-024-01150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41423-024-01150-0

Keywords

Search

Quick links