Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SMAD7 expression in CAR-T cells improves persistence and safety for solid tumors

Abstract

Despite the tremendous progress of chimeric antigen receptor T (CAR-T) cell therapy in hematological malignancies, their application in solid tumors has been limited largely due to T-cell exhaustion in the tumor microenvironment (TME) and systemic toxicity caused by excessive cytokine release. As a key regulator of the immunosuppressive TME, TGF-β promotes cytokine synthesis via the NF-κB pathway. Here, we coexpressed SMAD7, a suppressor of TGF-β signaling, with a HER2-targeted CAR in engineered T cells. These novel CAR-T cells displayed high cytolytic efficacy and were resistant to TGF-β-triggered exhaustion, which enabled sustained tumoricidal capacity after continuous antigen exposure. Moreover, SMAD7 substantially reduced the production of inflammatory cytokines by antigen-primed CAR-T cells. Mechanistically, SMAD7 downregulated TGF-β receptor I and abrogated the interplay between the TGF-β and NF-κB pathways in CAR-T cells. As a result, these CAR-T cells persistently inhibited tumor growth and promoted the survival of tumor-challenged mice regardless of the hostile tumor microenvironment caused by a high concentration of TGF-β. SMAD7 coexpression also enhanced CAR-T-cell infiltration and persistent activation in patient-derived tumor organoids. Therefore, our study demonstrated the feasibility of SMAD7 coexpression as a novel approach to improve the efficacy and safety of CAR-T-cell therapy for solid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maus MV. A decade of CAR T cell evolution. Nat Cancer. 2022;3:270–1.

    Article  PubMed  Google Scholar 

  3. Singh AK, McGuirk JP. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020;21:e168–78.

    Article  PubMed  CAS  Google Scholar 

  4. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl J Med. 2020;382:1331–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Stirrups R. CAR T-cell therapy for relapsed or refractory mantle-cell lymphoma. Lancet Oncol. 2020;21:e239.

    Article  PubMed  Google Scholar 

  6. Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 2017;27:38–58.

    Article  PubMed  CAS  Google Scholar 

  7. Knochelmann HM, Smith AS, Dwyer CJ, Wyatt MM, Mehrotra S, Paulos CM. CAR T cells in solid tumors: blueprints for building effective therapies. Front Immunol. 2018;9:1740.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao Z, Xiao X, Saw PE, Wu W, Huang H, Chen J, et al. Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Sci China Life Sci. 2020;63:180–205.

    Article  PubMed  CAS  Google Scholar 

  9. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27:5904–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30:R921–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res. 2020;39:89.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50:924–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15:669–82.

    Article  PubMed  CAS  Google Scholar 

  14. Noh KE, Lee JH, Choi SY, Jung NC, Nam JH, Oh JS, et al. TGF-β/IL-7 chimeric switch receptor-expressing CAR-T cells inhibit recurrence of CD19-positive B cell lymphoma. Int J Mol Sci. 2021;22:8706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Stüber T, Monjezi R, Wallstabe L, Kühnemundt J, Nietzer SL, Dandekar G, et al. Inhibition of TGF-β-receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J Immunother Cancer. 2020;8:e000676.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X. et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 2022;39:110986.

    Article  PubMed  CAS  Google Scholar 

  17. Seoane J, Gomis RR. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol. 2017;9:a022277.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen W, Ten Dijke P. Immunoregulation by members of the TGFβ superfamily. Nat Rev Immunol. 2016;16:723–40.

    Article  PubMed  Google Scholar 

  19. Ungefroren H. Blockade of TGF-β signaling: a potential target for cancer immunotherapy? Expert Opin Ther Targets. 2019;23:679–93.

    Article  PubMed  CAS  Google Scholar 

  20. Li S, Liu M, Do MH, Chou C, Stamatiades EG, Nixon BG, et al. Cancer immunotherapy via targeted TGF-β signalling blockade in T(H) cells. Nature. 2020;587:121–5.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  21. Travis MA, Sheppard D. TGF-β activation and function in immunity. Annu Rev Immunol. 2014;32:51–82.

    Article  PubMed  CAS  Google Scholar 

  22. Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997;389:631–5.

    Article  ADS  PubMed  CAS  Google Scholar 

  23. Tian H, Liu C, Yu J, Han J, Du J, Liang S, et al. PHF14 enhances DNA methylation of SMAD7 gene to promote TGF-β-driven lung adenocarcinoma metastasis. Cell Discov. 2023;9:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol. 2020;55:691–715.

    Article  PubMed  Google Scholar 

  25. Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin. 2009;41:263–72.

    Article  PubMed  CAS  Google Scholar 

  26. Tu E, Chia C, Chen W, Zhang D, Park SA, Jin W, et al. T cell receptor-regulated TGF-β type i receptor expression determines T cell quiescence and activation. Immunity. 2018;48:745–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001;276:12477–80.

    Article  PubMed  CAS  Google Scholar 

  28. Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight. 2020;5:e133977.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26:1855–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, et al. Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol. 2007;8:504–13.

    Article  PubMed  CAS  Google Scholar 

  31. Sun X, Cui Y, Feng H, Liu H, Liu X. TGF-β signaling controls Foxp3 methylation and T reg cell differentiation by modulating Uhrf1 activity. J Exp Med. 2019;216:2819–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Freudlsperger C, Bian Y, Contag Wise S, Burnett J, Coupar J, Yang X, et al. TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene. 2013;32:1549–59.

    Article  PubMed  CAS  Google Scholar 

  33. Chen W. TGF-β regulation of T cells. Annu Rev Immunol. 2023;41:483–512.

    Article  PubMed  CAS  Google Scholar 

  34. Wang W, Huang XR, Li AG, Liu F, Li JH, Truong LD, et al. Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol. 2005;16:1371–83.

    Article  PubMed  CAS  Google Scholar 

  35. Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature. 2018;556:457–62.

    Article  ADS  PubMed  CAS  Google Scholar 

  36. Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2022;22:85–96.

    Article  PubMed  CAS  Google Scholar 

  37. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920–6.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chiriaco C, Donini C, Cortese M, Ughetto S, Modica C, Martinelli I, et al. Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy. J Exp Clin Cancer Res. 2022;41:309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers. 2016;8:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24:563–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang X, Zhang C, Qiao M, Cheng C, Tang N, Lu S, et al. Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells. Cancer Cell. 2022;40:1407–22.

    Article  PubMed  CAS  Google Scholar 

  44. Bai X, Yi M, Jiao Y, Chu Q, Wu K. Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther. 2019;12:9527–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bengsch B, Ohtani T, Khan O, Setty M, Manne S, O’Brien S, et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity. 2018;48:1029–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018;558:307–12.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li G, Liao G, Xie J, Liu B, Li X, Qiu M. Overexpression of SMAD7 improves the function of EGFR-targeted human CAR-T cells against non-small-cell lung cancer. Respirology. 2023;28:869–80.

    Article  PubMed  Google Scholar 

  48. Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8:369–80.

    Article  PubMed  CAS  Google Scholar 

  49. Dimelo S, Gubser P, Loeliger J, Frick C, Develioglu L, Fischer M, et al. Tumor-derived TGF-β inhibits mitochondrial respiration to suppress IFN-γ production by human CD4(+) T cells. Sci Signal. 2019;12:eaav3334.

    Article  Google Scholar 

  50. Qin F, Liu X, Chen J, Huang S, Wei W, Zou Y, et al. Anti-TGF-β attenuates tumor growth via polarization of tumor associated neutrophils towards an anti-tumor phenotype in colorectal cancer. J Cancer. 2020;11:2580–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Martin, CJ, Datta A, Littlefield C, Kalra A, Chapron C, Wawersik S, et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci Transl Med. 2020;12:eaay8456.

    Article  PubMed  CAS  Google Scholar 

  52. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6:1365–75.

    Article  PubMed  CAS  Google Scholar 

  53. Su YL, Wang X, Mann M, Adamus TP, Wang D, Moreira DF, et al. Myeloid cell-targeted miR-146a mimic inhibits NF-κB-driven inflammation and leukemia progression in vivo. Blood. 2020;135:167–80.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xiao X, Huang S, Chen S, Wang Y, Sun Q, Xu X, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J Exp Clin Cancer Res. 2021;40:367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell. 2008;31:918–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yan X, Chen YG. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochem J. 2011;434:1–10.

    Article  PubMed  CAS  Google Scholar 

  57. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, et al. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 2008;10:1199–207.

    Article  PubMed  CAS  Google Scholar 

  58. Gunderson AJ, Yamazaki T, McCarty K, Fox N, Phillips M, Alice A, et al. TGFβ suppresses CD8(+) T cell expression of CXCR3 and tumor trafficking. Nat Commun. 2020;11:1749.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant from the National Natural Science Foundation of China (No. 81972870), the Independent Research Topic of State Key Laboratory of Cancer Biology of Fourth Military Medical University (CBSKL2022ZZ20), Shaanxi Innovative Research Team for Key Science and Technology (S2022-ZC-TD-0065), the Natural Science Foundation of Henan Province (No. 222300420264), and Tangdu Hospital-key research project (2022TDGS007).

Author information

Authors and Affiliations

Authors

Contributions

BLZ, BY and AGY conceived the study; BY and SXL designed the project and wrote the manuscript with inputs from SXL and RZ; BLZ, LTJ and BY provided the funding support; SXL, RZ, JL and YYW performed the majority of the experiments and data analysis; YJH, HD, XJZ, YTZ, PJW and RTM performed some of the experiments and contributed reagents, materials, and analysis tools; LTJ, AGY and BY revised the manuscript.

Corresponding authors

Correspondence to Lintao Jia, Angang Yang or Bo Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Zheng, R., Zuo, B. et al. SMAD7 expression in CAR-T cells improves persistence and safety for solid tumors. Cell Mol Immunol 21, 213–226 (2024). https://doi.org/10.1038/s41423-023-01120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-01120-y

Keywords

This article is cited by

Search

Quick links