Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

IL-24 improves efficacy of CAR-T cell therapy by targeting stemness of tumor cells

Abstract

Background

Cancer stem cells (CSCs) induce therapeutic resistance and may be an important barrier to cancer immunotherapy. Chimeric antigen receptor T (CAR-T) cell therapy has demonstrated remarkable efficacy in clinical settings. However, CAR-T cell therapy fails in a large proportion of patients, especially in those with solid tumors. It is unclear how CSCs mediate resistance to CAR-T cells, and whether CAR-T cells can more effectively eradicate CSCs.

Methods

In this study, the effect of CSCs on CAR-T cell therapy was determined using in vitro and in vivo assays. Subsequently, Interleukin-24 (IL-24) was expressed along with CAR in T cells. Further in vitro and in vivo tests were performed to determine the effects of IL-24 on CSCs and CAR-T cell therapy.

Results

IL-24 induced apoptosis in CSCs and contributed to T cell activation, differentiation, and proliferation. CAR.IL-24-T cells inhibited CSC enrichment and exhibited stronger antitumor activity in vitro and in vivo.

Conclusions

IL-24 helps eliminate CSCs and endows CAR-T cells with improved antitumor reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CAR-T cells exhibit antigen-specific cytotoxicity against tumor cells.
Fig. 2: CSCs show resistance to CAR-T cell therapy.
Fig. 3: IL-24 inhibits stemness of tumor cells and induces apoptosis.
Fig. 4: IL-24 increases T cell activation, central memory differentiation, and proliferation.
Fig. 5: CAR.IL-24-T cells exhibit enhanced antitumor activity in vitro.
Fig. 6: CAR.NKG2D.IL-24-T cells exhibit improved antitumor efficacy in vivo.
Fig. 7: CAR.IL-24-T cells cure late-stage tumors and provide long-term protection.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Han J, Won M, Kim JH, Jung E, Min K, Jangili P, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev. 2020;49:7856–78.

    Article  CAS  PubMed  Google Scholar 

  2. Clarke MF. Clinical and therapeutic implications of cancer stem cells. N. Engl J Med. 2019;381:e19.

    PubMed  Google Scholar 

  3. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prager BC, Xie Q, Bao S, Rich JN. Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell. 2019;24:41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang Y, Li X, Wang T, Guo Q, Xi T, Zheng L. Emerging agents that target signaling pathways in cancer stem cells. J Hematol Oncol. 2020;13:60.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Song M, Ping Y, Zhang K, Yang L, Li F, Zhang C, et al. Low-Dose IFNgamma induces tumor cell stemness in tumor microenvironment of non-small cell lung cancer. Cancer Res. 2019;79:3737–48.

    Article  CAS  PubMed  Google Scholar 

  7. Dana H, Chalbatani GM, Jalali SA, Mirzaei HR, Grupp SA, Suarez ER, et al. CAR-T cells: early successes in blood cancer and challenges in solid tumors. Acta Pharm Sin B. 2021;11:1129–47.

    Article  CAS  PubMed  Google Scholar 

  8. Wei J, Guo Y, Wang Y, Wu Z, Bo J, Zhang B, et al. Clinical development of CAR T cell therapy in China: 2020 update. Cell Mol Immunol. 2021;18:792–804.

    Article  CAS  PubMed  Google Scholar 

  9. June CH, Sadelain M. Chimeric antigen receptor therapy. N. Engl J Med. 2018;379:64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J Hematol Oncol. 2020;13:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tian Y, Wen C, Zhang Z, Liu Y, Li F, Zhao Q, et al. CXCL9-modified CAR T cells improve immune cell infiltration and antitumor efficacy. Cancer Immunol Immunother. 2022;71:2663–75.

    Article  CAS  PubMed  Google Scholar 

  12. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol. 2018;36:346–51.

    Article  CAS  PubMed  Google Scholar 

  13. Li G, Guo J, Zheng Y, Ding W, Han Z, Qin L, et al. CXCR5 guides migration and tumor eradication of anti-EGFR chimeric antigen receptor T cells. Mol Ther Oncolytics. 2021;22:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mei Z, Zhang K, Lam AK, Huang J, Qiu F, Qiao B, et al. MUC1 as a target for CAR-T therapy in head and neck squamous cell carinoma. Cancer Med. 2020;9:640–52.

    Article  CAS  PubMed  Google Scholar 

  15. Fultang L, Booth S, Yogev O, Martins B, Tubb V, Panetti S, et al. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood. 2020;136:1155–60.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, et al. Lipid metabolism in cancer progression and therapeutic strategies. MedComm. 2020;2:27–59.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, et al. Recent insights into apoptosis and toxic autophagy: the roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol. 2020;66:140–54.

    Article  CAS  PubMed  Google Scholar 

  18. Casciello F, Kelly GM, Ramarao-Milne P, Kamal N, Stewart TA, Mukhopadhyay P, et al. Combined inhibition of G9a and EZH2 suppresses tumor growth via synergistic induction of IL24-mediated apoptosis. Cancer Res. 2022;82:1208–21.

    Article  CAS  PubMed  Google Scholar 

  19. Pradhan AK, Talukdar S, Bhoopathi P, Shen XN, Emdad L, Das SK, et al. mda-7/IL-24 mediates cancer cell-specific death via regulation of miR-221 and the Beclin-1 axis. Cancer Res. 2017;77:949–59.

    Article  CAS  PubMed  Google Scholar 

  20. Bhoopathi P, Lee N, Pradhan AK, Shen XN, Das SK, Sarkar D, et al. mda-7/IL-24 induces cell death in neuroblastoma through a novel mechanism involving AIF and ATM. Cancer Res. 2016;76:3572–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dash R, Bhoopathi P, Das SK, Sarkar S, Emdad L, Dasgupta S, et al. Novel mechanism of MDA-7/IL-24 cancer-specific apoptosis through SARI induction. Cancer Res. 2014;74:563–74.

    Article  CAS  PubMed  Google Scholar 

  22. Panneerselvam J, Srivastava A, Mehta M, Chen A, Zhao YD, Munshi A, et al. IL-24 inhibits lung cancer growth by suppressing GLI1 and inducing DNA damage. Cancers. 2019;11:1879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKenzie T, Liu Y, Fanale M, Swisher SG, Chada S, Hunt KK. Combination therapy of Ad-mda7 and trastuzumab increases cell death in Her-2/neu-overexpressing breast cancer cells. Surgery. 2004;136:437–42.

    Article  PubMed  Google Scholar 

  24. Yacoub A, Hamed HA, Allegood J, Mitchell C, Spiegel S, Lesniak MS, et al. PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res. 2010;70:1120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhutia SK, Das SK, Azab B, Menezes ME, Dent P, Wang XY, et al. Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24. Int J Cancer. 2013;133:2726–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng JZ, Yu D, Zhang H, Jin CS, Liu Y, Zhao X, et al. Inhibitive effect of IL-24 gene on CD133+ laryngeal cancer cells. Asian Pac J Trop Med. 2014;7:867–72.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Liu Y, Xu Y. Interleukin-24 regulates T cell activity in patients with colorectal adenocarcinoma. Front Oncol. 2019;9:1401.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu Z, Liu W, Wang Z, Zeng B, Peng G, Niu H, et al. Mesenchymal stem cells derived from iPSCs expressing interleukin-24 inhibit the growth of melanoma in the tumor-bearing mouse model. Cancer Cell Int. 2020;20:33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rao LZ, Wang Y, Zhang L, Wu G, Zhang L, Wang FX, et al. IL-24 deficiency protects mice against bleomycin-induced pulmonary fibrosis by repressing IL-4-induced M2 program in macrophages. Cell Death Differ. 2021;28:1270–83.

    Article  CAS  PubMed  Google Scholar 

  30. Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y, et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther. 2005;11:149–59.

    Article  CAS  PubMed  Google Scholar 

  31. Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N, et al. Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther. 2005;11:160–72.

    Article  CAS  PubMed  Google Scholar 

  32. Shi X, Zhang D, Li F, Zhang Z, Wang S, Xuan Y, et al. Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity. J Hematol Oncol. 2019;12:127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xuan Y, Sheng Y, Zhang D, Zhang K, Zhang Z, Ping Y, et al. Targeting CD276 by CAR-T cells induces regression of esophagus squamous cell carcinoma in xenograft mouse models. Transl Oncol. 2021;14:101138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao Q, Wang S, Li F, Lian J, Cheng S, Yue D, et al. High mobility group protein B1 decreases surface localization of PD-1 to augment T-cell activation. Cancer Immunol Res. 2022;10:844–55.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang K, Zhang L, Mi Y, Tang Y, Ren F, Liu B, et al. A ceRNA network and a potential regulatory axis in gastric cancer with different degrees of immune cell infiltration. Cancer Sci. 2020;111:4041–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng S, Li F, Qin H, Ping Y, Zhao Q, Gao Q, et al. Long Noncoding RNA lncNDEPD1 regulates PD-1 expression via miR-3619-5p in CD8(+) T cells. J Immunol. 2022;208:1483–92.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, He L, Sadagopan A, Ma T, Dotti G, Wang Y, et al. Targeting radiation-resistant prostate cancer stem cells by B7-H3 CAR T cells. Mol Cancer Ther. 2021;20:577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seyfrid M, Maich WT, Shaikh VM, Tatari N, Upreti D, Piyasena D, et al. CD70 as an actionable immunotherapeutic target in recurrent glioblastoma and its microenvironment. J Immunother Cancer. 2022;10:e003289.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell. 2019;177:1172–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nusse R, Clevers H. Wnt/beta-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  41. Hu C, Qian L, Miao Y, Huang Q, Miao P, Wang P, et al. Antigen-presenting effects of effector memory Vgamma9Vdelta2 T cells in rheumatoid arthritis. Cell Mol Immunol. 2012;9:245–54.

    Article  CAS  PubMed  Google Scholar 

  42. Li F, Zhang Z, Xuan Y, Zhang D, Liu J, Li A, et al. PD-1 abrogates the prolonged persistence of CD8(+) CAR-T cells with 4-1BB co-stimulation. Signal Transduct Target Ther. 2020;5:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Larson RC, Kann MC, Bailey SR, Haradhvala NJ, Llopis PM, Bouffard AA, et al. CAR T cell killing requires the IFNgammaR pathway in solid but not liquid tumours. Nature. 2022;604:563–70.

    Article  CAS  PubMed  Google Scholar 

  44. Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38:473–88.

    Article  CAS  PubMed  Google Scholar 

  45. Fuca G, Reppel L, Landoni E, Savoldo B, Dotti G. Enhancing chimeric antigen receptor t cell efficacy in solid tumors. Clin Cancer Res. 2020;26:2444–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021;14:156.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fan S, Gao H, Ji W, Zhu F, Sun L, Liu Y, et al. Umbilical cord-derived mesenchymal stromal/stem cells expressing IL-24 induce apoptosis in gliomas. J Cell Physiol. 2020;235:1769–79.

    Article  CAS  PubMed  Google Scholar 

  48. Alizadeh D, Wong RA, Yang X, Wang D, Pecoraro JR, Kuo CF, et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res. 2019;7:759–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families for their consent and participation in this clinical experiment.

Funding

This work was supported by grants from Ministry of Science and Technology (2022YFE0141000), National Natural Science Foundation of China (82272873, U2004115), Department of Science and Technology of Henan Province (221100310100, Z20221343036, SBGJ202101010, 201300310400), Health Commission of Henan Province (YXKC2021037), and First Affiliated Hospital of Zhengzhou University (QNCXTD2023010).

Author information

Authors and Affiliations

Authors

Contributions

FL, YZ and KZ designed this work and analyzed the data; KZ, WHH and CLW assisted with or performed experiments and analyses; LZ and LXZ assisted in providing tumor samples; KZ, FL and YZ wrote the manuscript; KZ and FL assisted in revising the manuscript.

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing or other interests that may be perceived to influence the results and/or discussion reported in this paper.

Ethics approval and consent to participate

The research protocol was reviewed and approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University (2019-KY-258), and informed consent was obtained from all participants included in the study, in agreement with the institutional guidelines.

Consent for publication

The results/data/figures in this manuscript have not been published elsewhere, nor are they under consideration by another publisher.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Hu, W., Li, F. et al. IL-24 improves efficacy of CAR-T cell therapy by targeting stemness of tumor cells. Br J Cancer 130, 1337–1347 (2024). https://doi.org/10.1038/s41416-024-02601-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02601-1

Search

Quick links