Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MST4 kinase regulates immune thrombocytopenia by phosphorylating STAT1-mediated M1 polarization of macrophages

A Correction to this article was published on 31 October 2023

This article has been updated

Abstract

Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disorder in which macrophages play a critical role. Mammalian sterile-20-like kinase 4 (MST4), a member of the germinal-center kinase STE20 family, has been demonstrated to be a regulator of inflammation. Whether MST4 participates in the macrophage-dependent inflammation of ITP remains elusive. The expression and function of MST4 in macrophages of ITP patients and THP-1 cells, and of a macrophage-specific Mst4−/− (Mst4ΔM/ΔM) ITP mouse model were determined. Macrophage phagocytic assays, RNA sequencing (RNA-seq) analysis, immunofluorescence analysis, coimmunoprecipitation (co-IP), mass spectrometry (MS), bioinformatics analysis, and phosphoproteomics analysis were performed to reveal the underlying mechanisms. The expression levels of the MST4 gene were elevated in the expanded M1-like macrophages of ITP patients, and this elevated expression of MST4 was restored to basal levels in patients with remission after high-dose dexamethasone treatment. The expression of the MST4 gene was significantly elevated in THP-1-derived M1 macrophages. Silencing of MST4 decreased the expression of M1 macrophage markers and cytokines, and impaired phagocytosis, which could be increased by overexpression of MST4. In a passive ITP mouse model, macrophage-specific depletion of Mst4 reduced the numbers of M1 macrophages in the spleen and peritoneal lavage fluid, attenuated the expression of M1 cytokines, and promoted the predominance of FcγRIIb in splenic macrophages, which resulted in amelioration of thrombocytopenia. Downregulation of MST4 directly inhibited STAT1 phosphorylation, which is essential for M1 polarization of macrophages. Our study elucidates a critical role for MST4 kinase in the pathology of ITP and identifies MST4 kinase as a potential therapeutic target for refractory ITP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this published article [and its supplementary information files.

Change history

References

  1. Cooper N, Ghanima W. Immune thrombocytopenia. N Engl J Med. 2019;381:945–55.

    Article  PubMed  Google Scholar 

  2. Hou Y, Xie J, Wang S, Li D, Wang L, Wang H, et al. Glucocorticoid receptor modulates myeloid-derived suppressor cell function via mitochondrial metabolism in immune thrombocytopenia. Cell Mol Immunol. 2022;19:764–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhuang X, Xu P, Ou Y, Shao X, Li Y, Ma Y, et al. Decreased cyclooxygenase-2 associated with impaired megakaryopoiesis and thrombopoiesis in primary immune thrombocytopenia. J Transl Med. 2023;21:540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shao X, Xu P, Ji L, Wu B, Zhan Y, Zhuang X, et al. Low-dose decitabine promotes M2 macrophage polarization in patients with primary immune thrombocytopenia via enhancing KLF4 binding to PPARγ promoter. Clin Transl Med. 2023;13:e1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Audia S, Mahevas M, Samson M, Godeau B, Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun Rev. 2017;16:620–32.

    Article  CAS  PubMed  Google Scholar 

  6. Bussel J, Cooper N, Boccia R, Zaja F, Newland A. Immune thrombocytopenia. Expert Rev Hematol. 2021;14:1013–25.

    Article  CAS  PubMed  Google Scholar 

  7. Semple JW, Rebetz J, Maouia A, Kapur R. An update on the pathophysiology of immune thrombocytopenia. Curr Opin Hematol. 2020;27:423–9.

    Article  CAS  PubMed  Google Scholar 

  8. Neunert C, Terrell DR, Arnold DM, Buchanan G, Cines DB, Cooper N, et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019;3:3829–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ou Y, Zhan Y, Zhuang X, Shao X, Xu P, Li F, et al. A bibliometric analysis of primary immune thrombocytopenia from 2011 to 2021. Neutrophils contribute to elevated BAFF levels to modulate adaptive immunity in patients with primary immune thrombocytopenia by CD62P and PSGL1 interaction. Br J Haematol. 2023;201:954–70.

    Article  PubMed  Google Scholar 

  10. Zhan Y, Cao J, Ji L, Zhang M, Shen Q, Xu P, et al. Impaired mitochondria of Tregs decreases OXPHOS-derived ATP in primary immune thrombocytopenia with positive plasma pathogens detected by metagenomic sequencing. Exp Hematol Oncol. 2022;11:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nahrendorf M, Swirski FK. Monocyte and macrophage heterogeneity in the heart. Circ Res. 2013;112:1624–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity. 2011;35:323–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gordon S, Pluddemann A, Martinez Estrada F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev. 2014;262:36–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cuccarese MF, Dubach JM, Pfirschke C, Engblom C, Garris C, Miller MA, et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun. 2017;8:14293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Udalova IA, Mantovani A, Feldmann M. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol. 2016;12:472–85.

    Article  CAS  PubMed  Google Scholar 

  16. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12:231–8.

    Article  CAS  PubMed  Google Scholar 

  18. Feng Q, Xu M, Yu YY, Hou Y, Mi X, Sun YX, et al. High-dose dexamethasone or all-trans-retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia. J Thromb Haemost. 2017;15:1845–58.

    Article  CAS  PubMed  Google Scholar 

  19. Di Paola A, Palumbo G, Merli P, Argenziano M, Tortora C, Strocchio L, et al. Effects of eltrombopag on in vitro macrophage polarization in pediatric immune thrombocytopenia. Int J Mol Sci. 2020;22:97.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Psaila B, Bussel JB. Fc receptors in immune thrombocytopenias: a target for immunomodulation? J Clin Investig. 2008;118:2677–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.

    Article  CAS  PubMed  Google Scholar 

  22. Wijngaarden S, van de Winkel JG, Jacobs KM, Bijlsma JW, Lafeber FP, van Roon JA. A shift in the balance of inhibitory and activating Fcgamma receptors on monocytes toward the inhibitory Fcgamma receptor IIb is associated with prevention of monocyte activation in rheumatoid arthritis. Arthritis Rheum. 2004;50:3878–87.

    Article  CAS  PubMed  Google Scholar 

  23. Yu X, Lazarus AH. Targeting FcgammaRs to treat antibody-dependent autoimmunity. Autoimmun Rev. 2016;15:510–2.

    Article  CAS  PubMed  Google Scholar 

  24. Liu XG, Ma SH, Sun JZ, Ren J, Shi Y, Sun L, et al. High-dose dexamethasone shifts the balance of stimulatory and inhibitory Fcgamma receptors on monocytes in patients with primary immune thrombocytopenia. Blood. 2011;117:2061–9.

    Article  CAS  PubMed  Google Scholar 

  25. Liu XG, Liu S, Feng Q, Liu XN, Li GS, Sheng Z, et al. Thrombopoietin receptor agonists shift the balance of Fcgamma receptors toward inhibitory receptor IIb on monocytes in ITP. Blood. 2016;128:852–61.

    Article  CAS  PubMed  Google Scholar 

  26. Huang T, Kim CK, Alvarez AA, Pangeni RP, Wan X, Song X, et al. MST4 phosphorylation of ATG4B regulates autophagic activity, tumorigenicity, and radioresistance in glioblastoma. Cancer Cell. 2017;32:840–55.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, et al. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med. 2020;217:e20191817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi Z, Jiao S, Zhang Z, Ma M, Zhang Z, Chen C, et al. Structure of the MST4 in complex with MO25 provides insights into its activation mechanism. Structure. 2013;21:449–61.

    Article  CAS  PubMed  Google Scholar 

  29. Ling P, Lu TJ, Yuan CJ, Lai MD. Biosignaling of mammalian Ste20-related kinases. Cell Signal. 2008;20:1237–47.

    Article  CAS  PubMed  Google Scholar 

  30. Jiao S, Zhang Z, Li C, Huang M, Shi Z, Wang Y, et al. The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. Nat Immunol. 2015;16:246–57.

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, You J, Peng X, Wang Q, Li C, Jiang N, et al. Mammalian Ste20-like kinase 4 inhibits the inflammatory response in Aspergillus fumigatus keratitis. Int Immunopharmacol. 2020;88:107021.

    Article  CAS  PubMed  Google Scholar 

  32. Luan D, Zhang Y, Yuan L, Chu Z, Ma L, Xu Y, et al. MST4 modulates the neuro-inflammatory response by regulating IkappaBalpha signaling pathway and affects the early outcome of experimental ischemic stroke in mice. Brain Res Bull. 2020;154:43–50.

    Article  CAS  PubMed  Google Scholar 

  33. Provan D, Stasi R, Newland AC, Blanchette VS, Bolton-Maggs P, Bussel JB, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010;115:168–86.

    Article  CAS  PubMed  Google Scholar 

  34. Shao X, Wu B, Cheng L, Li F, Zhan Y, Liu C, et al. Distinct alterations of CD68(+)CD163(+) M2-like macrophages and myeloid-derived suppressor cells in newly diagnosed primary immune thrombocytopenia with or without CR after high-dose dexamethasone treatment. J Transl Med. 2018;16:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Xie L, Wang S, Lin J, Liang J, Xu J. Azithromycin promotes alternatively activated macrophage phenotype in systematic lupus erythematosus via PI3K/Akt signaling pathway. Cell Death Dis. 2018;9:1080.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Neschadim A, Branch DR. Mouse Models for Immune-Mediated Platelet Destruction or Immune Thrombocytopenia (ITP). Curr Protoc Immunol. 2016;113:15.30.1–15.30.13.

    Article  PubMed  Google Scholar 

  37. Han Y, Yu G, Sarioglu H, Caballero-Martinez A, Schlott F, Ueffing M, et al. Proteomic investigation of the interactome of FMNL1 in hematopoietic cells unveils a role in calcium-dependent membrane plasticity. J Proteom. 2013;78:72–82.

    Article  CAS  Google Scholar 

  38. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–20.

    Article  CAS  PubMed  Google Scholar 

  39. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11:750–61.

    Article  CAS  PubMed  Google Scholar 

  40. Grace RF, Lambert MP. An update on pediatric immune thrombocytopenia (ITP): differentiating primary ITP, IPD, and PID. Blood. 2021.

  41. Palandri F, Rossi E, Bartoletti D, Ferretti A, Ruggeri M, Lucchini E, et al. Real-world use of thrombopoietin receptor agonists in older patients with primary immune thrombocytopenia. Blood. 2021;138:571–83.

    Article  CAS  PubMed  Google Scholar 

  42. Bolton-Maggs PHB, George JN. Immune thrombocytopenia treatment. N Engl J Med. 2021;385:948–50.

    Article  CAS  PubMed  Google Scholar 

  43. Lambert MP, Gernsheimer TB. Clinical updates in adult immune thrombocytopenia. Blood. 2017;129:2829–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang H, Yu T, An N, Sun Y, Xu P, Han P, et al. Enhancing regulatory T-cell function via inhibition of high mobility group box 1 protein signaling in immune thrombocytopenia. Haematologica. 2023;108:843–58.

    Article  CAS  PubMed  Google Scholar 

  45. Ni X, Wang L, Wang H, Yu T, Xie J, Li G, et al. Low-dose decitabine modulates myeloid-derived suppressor cell fitness via LKB1 in immune thrombocytopenia. Blood. 2022;140:2818–34.

    Article  CAS  PubMed  Google Scholar 

  46. Ehrchen JM, Roth J, Barczyk-Kahlert K. More than suppression: glucocorticoid action on monocytes and macrophages. Front Immunol. 2019;10:2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17:233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caputo M, Cansby E, Kumari S, Kurhe Y, Nair S, Stahlman M, et al. STE20-type protein kinase MST4 controls NAFLD progression by regulating lipid droplet dynamics and metabolic stress in hepatocytes. Hepatol Commun. 2021;5:1183–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramsauer K, Sadzak I, Porras A, Pilz A, Nebreda AR, Decker T, et al. p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation. Proc Natl Acad Sci USA. 2002;99:12859–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dhodapkar KM, Banerjee D, Connolly J, Kukreja A, Matayeva E, Veri MC, et al. Selective blockade of the inhibitory Fcgamma receptor (FcgammaRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J Exp Med. 2007;204:1359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5:629–40.

    Article  CAS  PubMed  Google Scholar 

  52. Xu D, Mu R, Wei X. The roles of IL-1 family cytokines in the pathogenesis of systemic sclerosis. Front Immunol. 2019;10:2025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig. 2012;122:787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen S, Saeed A, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8:207.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science. 2001;291:484–6.

    Article  CAS  PubMed  Google Scholar 

  57. Panchanathan R, Shen H, Duan X, Rathinam VA, Erickson LD, Fitzgerald KA, et al. Aim2 deficiency in mice suppresses the expression of the inhibitory Fcgamma receptor (FcgammaRIIB) through the induction of the IFN-inducible p202, a lupus susceptibility protein. J Immunol. 2011;186:6762–70.

    Article  CAS  PubMed  Google Scholar 

  58. Pricop, Redecha L, Teillaud P, Frey JL, Fridman J, Sautes WH, et al. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. J Immunol. 2001;166:531–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was conducted at the Institute of Clinical Science of Zhongshan Hospital, Fudan University. The study was supported by the Medical Science Data Center of Shanghai Medical College of Fudan University. We sincerely thank all staff and participants for their important contributions.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82370130, 81870098, 82300146), the Program of the Shanghai Academic/Technology Researcher Leader (20XD1401000), the Shanghai Engineering Research Center of Tumor Multi-Target Gene Diagnosis (20DZ2254300), the Key Subject Construction Program of the Shanghai Health Administrative Authority (ZK2019B30), and the Science and Technology Commission of the Shanghai Municipality (21ZR1459000). All authors obtained permission to acknowledge all those mentioned in the acknowledgments.

Author information

Authors and Affiliations

Authors

Contributions

YC, ZZ, JC, LJ, YZ, and HC performed the literature review and drafted and revised the manuscript; JC, YC, HC, and ZZ contributed to the critical revision of the manuscript; YZ, LJ, PX, HC, YO, XZ, XS, BW, PC, LC, LS, FH, FL, and YC performed the experiments and analyzed the data. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Hao Chen, Zhaocai Zhou or Yunfeng Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was in accordance with the ethical standards formulated in the Helsinki Declaration and was approved by the respective local Medical Ethics Committees of Zhongshan Hospital of Fudan University (#B2020-279R). Written informed consent was obtained from each patient upon enrollment.

Additional information

Data sharing statement All data in this study are included in this published article and its supplementary information files. Original data are available from the corresponding author upon reasonable request.

The original online version of this article was revised: In this article, the details for Affiliation 1 were incorrectly given as ‘Department of Hematology, Fudan University, Shanghai 200032, China’ but should have been ‘Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200032, China’; the details for Affiliation 3 were incorrectly given as ‘Department of Transfusion Medicine, Fudan University, Shanghai 200032, China’ but should have been ‘Department of Transfusion Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China’; the details for Affiliation 4 were incorrectly given as ‘Department of Laboratory Medicine, Fudan University, Shanghai 200032, China’ but should have been ‘Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China’. The original article has been corrected.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Ji, L., Zhan, Y. et al. MST4 kinase regulates immune thrombocytopenia by phosphorylating STAT1-mediated M1 polarization of macrophages. Cell Mol Immunol 20, 1413–1427 (2023). https://doi.org/10.1038/s41423-023-01089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-01089-8

Keywords

Search

Quick links