Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

cFLIPS regulates alternative NLRP3 inflammasome activation in human monocytes

Abstract

The innate immune responses, including inflammasome activation, are paramount for host defense against pathogen infection. In contrast to canonical and noncanonical inflammasome activation, in this study, heat-killed gram-negative bacteria (HK bacteria) were identified as single-step stimulators of the NLRP3 inflammasome in human monocytes, and they caused a moderate amount of IL-1β to be released from cells. Time course experiments showed that this alternative inflammasome response was finished within a few hours. Further analysis showed that the intrinsically limited NLRP3 inflammasome activation response was due to the negative regulation of caspase-8 by the short isoform of cFLIP (cFLIPs), which was activated by NF-κB. In contrast, overexpressed cFLIPS, but not overexpressed cFLIPL, inhibited the activation of caspase-8 and the release of IL-1β in response to HK bacteria infection in human monocytes. Furthermore, we demonstrated that TAK1 activity mediated the expression of cFLIPs and was upstream and essential for the caspase-8 cleavage induced by HK bacteria in human monocytes. The functional specificity of cFLIPs and TAK1 revealed unique responses of human monocytes to a noninvasive pathogen, providing novel insights into an alternative regulatory pathway of NLRP3 inflammasome activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54:1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov R. Approaching the asymptote: 20 years later. Immunity. 2009;30:766–75.

    Article  CAS  PubMed  Google Scholar 

  3. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14:1590–604.

    Article  CAS  PubMed  Google Scholar 

  4. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1-beta processing in monocytes. Nature. 1992;356:768–74.

    Article  CAS  PubMed  Google Scholar 

  5. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science. 1997;275:206–9.

    Article  CAS  PubMed  Google Scholar 

  6. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  7. Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 2021;593:607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang J, Liu Z, Xiao TS. Post-translational regulation of inflammasomes. Cell Mol Immunol. 2017;14:65–79.

    Article  CAS  PubMed  Google Scholar 

  9. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187–92.

    Article  CAS  PubMed  Google Scholar 

  10. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117–21.

    Article  CAS  PubMed  Google Scholar 

  11. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.

    Article  CAS  PubMed  Google Scholar 

  12. Martin-Sanchez F, Diamond C, Zeitler M, Gomez AI, Baroja-Mazo A, Bagnall J, et al. Inflammasome-dependent IL-1 beta release depends upon membrane permeabilisation. Cell Death Differ. 2016;23:1219–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, et al. Human monocytes engage an alternative inflammasome pathway. Immunity. 2016;44:833–46.

    Article  CAS  PubMed  Google Scholar 

  14. Zewinger S, Jochen R, Jankowski V, Hahm E, Schunk S, Schmit D, et al. Apolipoprotein C3 induces systemic inflammation and organ damage in Ckd by alternative inflammasome activation via a novel pathway. Nephrol Dial Transpl. 2019;34:gfz096.FO084.

    Article  Google Scholar 

  15. Gaidt MM, Hornung V. Alternative inflammasome activation enables IL-1β release from living cells. Curr Opin Immunol. 2017;44:7–13.

    Article  CAS  PubMed  Google Scholar 

  16. Morgado FN, de Carvalho LMV, Leite-Silva J, Seba AJ, Pimentel MIF, Fagundes A, et al. Unbalanced inflammatory reaction could increase tissue destruction and worsen skin infectious diseases - a comparative study of leishmaniasis and sporotrichosis. Sci Rep. 2018;8:2898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderton H, Wicks IP, Silke J. Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat Rev Rheumatol. 2020;16:496–513.

    Article  PubMed  Google Scholar 

  18. Headland SE, Norling LV. The resolution of inflammation: principles and challenges. Semin Immunol. 2015;27:149–60.

    Article  CAS  PubMed  Google Scholar 

  19. Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of inflammation: what controls its onset? Front Immunol. 2016;7:160.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nat Immunol. 2017;18:861–9.

    Article  CAS  PubMed  Google Scholar 

  21. Yu S, Green J, Wellens R, Lopez-Castejon G, Brough D. Bafilomycin A1 enhances NLRP3 inflammasome activation in human monocytes independent of lysosomal acidification. FEBS J. 2021;288:3186–96

  22. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruhl S, Broz P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur J Immunol. 2015;45:2927–36.

    Article  PubMed  Google Scholar 

  24. Peng B, Ling J, Lee AJ, Wang Z, Chang Z, Jin W, et al. Defective feedback regulation of NF-kappaB underlies Sjogren’s syndrome in mice with mutated kappaB enhancers of the IkappaBalpha promoter. Proc Natl Acad Sci USA. 2010;107:15193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alves BN, Tsui R, Almaden J, Shokhirev MN, Davis-Turak J, Fujimoto J, et al. I kappa B epsilon is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J Immunol. 2014;192:3121–32.

    Article  CAS  PubMed  Google Scholar 

  26. Abdul-Sater AA, Edilova MI, Clouthier DL, Mbanwi A, Kremmer E, Watts TH. The signaling adaptor TRAF1 negatively regulates Toll-like receptor signaling and this underlies its role in rheumatic disease. Nat Immunol. 2017;18:26–35.

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi K, Hernandez LD, Galan JE, Janeway CA, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of toll-like receptor signaling. Cell. 2002;110:191–202.

    Article  CAS  PubMed  Google Scholar 

  28. Panayotova-Dimitrova D, Feoktistova M, Ploesser M, Kellert B, Hupe M, Horn S, et al. cFLIP regulates skin homeostasis and protects against TNF-induced keratinocyte apoptosis. Cell Rep. 2013;5:397–408.

    Article  CAS  PubMed  Google Scholar 

  29. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature. 1997;386:517–21.

    Article  CAS  PubMed  Google Scholar 

  30. Geserick P, Drewniok C, Hupe M, Haas TL, Diessenbacher P, Sprick MR, et al. Suppression of cFLIP is sufficient to sensitize human melanoma cells to TRAIL- and CD95L-mediated apoptosis. Oncogene. 2008;27:3211–20.

    Article  CAS  PubMed  Google Scholar 

  31. Budd RC, Yeh WC, Tschopp J. cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol. 2006;6:196–204.

    Article  CAS  PubMed  Google Scholar 

  32. Muendlein HI, Jetton D, Connolly WM, Eidell KP, Magri Z, Smirnova I, et al. cFLIP(L) protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science. 2020;367:1379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J. NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol. 2001;21:5299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Safa AR, Pollok KE. Targeting the anti-apoptotic protein c-FLIP for cancer therapy. Cancers. 2011;3:1639–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, et al. Inhibition of death receptor signals by cellular FLIP. Nature. 1997;388:190–5.

    Article  CAS  PubMed  Google Scholar 

  36. Hu SM, Vincenz C, Buller M, Dixit VM. A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis. J Biol Chem. 1997;272:9621–4.

    Article  CAS  PubMed  Google Scholar 

  37. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem. 2001;276:20633–40.

    Article  CAS  PubMed  Google Scholar 

  38. Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, et al. c-FLIPL is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. Embo J. 2002;21:3704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.

    Article  CAS  PubMed  Google Scholar 

  40. Kataoka T, Tschopp J. N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Mol Cell Biol. 2004;24:2627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ajibade AA, Wang HY, Wang RF. Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol. 2013;34:307–16.

    Article  CAS  PubMed  Google Scholar 

  42. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 2018;362:1064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci USA. 2018;115:E10888–E97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmacke NA, O’Duill F, Gaidt MM, Szymanska I, Kamper JM, Schmid-Burgk JL, et al. IKKbeta primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network. Immunity. 2022;55:2271–84.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Palchaudhuri R, Lambrecht MJ, Botham RC, Partlow KC, van Ham TJ, Putt KS, et al. A Small molecule that induces intrinsic pathway apoptosis with unparalleled speed. Cell Rep. 2015;13:2027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ninomiya-Tsuji J, Kajino T, Ono K, Ohtomo T, Matsumoto M, Shiina M, et al. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem. 2003;278:18485–90.

    Article  CAS  PubMed  Google Scholar 

  47. Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB. TAK1 is critical for I kappa B kinase-mediated activation of the NF-kappa B pathway. J Mol Biol. 2003;326:105–15.

    Article  CAS  PubMed  Google Scholar 

  48. Unterreiner A, Rubert J, Kauffmann M, Fruhauf A, Heiser D, Erbel P, et al. Pharmacological inhibition of IKKbeta dampens NLRP3 inflammasome activation after priming in the human myeloid cell line THP-1. Biochem Biophys Res Commun. 2021;545:177–82.

    Article  CAS  PubMed  Google Scholar 

  49. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996;85:803–15.

    Article  CAS  PubMed  Google Scholar 

  50. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity. 1998;9:267–76.

    Article  CAS  PubMed  Google Scholar 

  51. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 2011;471:368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alvarez-Diaz S, Dillon CP, Lalaoui N, Tanzer MC, Rodriguez DA, Lin A, et al. The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity. 2016;45:513–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Su H, Bidere N, Zheng LX, Cubre A, Sakai K, Dale J, et al. Requirement for caspase-8 in NF-kappa B activation by antigen receptor. Science. 2005;307:1465–8.

    Article  CAS  PubMed  Google Scholar 

  54. Bidere N, Snow AL, Sakai K, Zheng LX, Lenardo MJ. Caspase-8 regulation by direct interaction with TRAF6 in T cell receptor-induced NF-kappa B activation. Curr Biol. 2006;16:1666–71.

    Article  CAS  PubMed  Google Scholar 

  55. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.

    Article  CAS  PubMed  Google Scholar 

  56. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. -

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29:357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Qiuhong Guo and Xu Zheng for their experimental support. This study is supported by grants from the Natural Science Foundation of China (81830049, 92269202), National Key R&D Program (2022YFC2304700, 2022YFC2303200, 2018YFA0507300), Strategic Priority Research Program (XDB29030303) and International Partnership Program (153831KYSB20190008) of the Chinese Academy of Sciences, Shanghai Municipal Science and Technology Major Project (2019SHZDZX02) and Research Leader Program (20XD1403900), as well as the Innovation Capacity Building Project of Jiangsu Province (BM2020019).

Author information

Authors and Affiliations

Authors

Contributions

SY and GM conceived the project. YG conducted most experiments; SY, MC, XW, LP, and BW helped with experiments and prepared critical reagents; YG, SY, and GM analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Bin Wei or Guangxun Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Yu, S., Chen, M. et al. cFLIPS regulates alternative NLRP3 inflammasome activation in human monocytes. Cell Mol Immunol 20, 1203–1215 (2023). https://doi.org/10.1038/s41423-023-01077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-01077-y

Keywords

This article is cited by

Search

Quick links