Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dual function for the chromatin organizer Special A-T rich Binding Protein 1 in B-lineage cells

Abstract

SATB1 (Special A-T rich Binding protein 1) is a cell type-specific factor that regulates the genetic network in developing T cells and neurons. In T cells, SATB1 is required for lineage commitment, VDJ recombination, development and maturation. Considering that its expression varies during B-cell differentiation, the involvement of SATB1 needs to be clarified in this lineage. Using a KO mouse model in which SATB1 was deleted from the pro-B-cell stage, we examined the consequences of SATB1 deletion in naive and activated B-cell subsets. Our model indicates first, unlike its essential function in T cells, that SATB1 is dispensable for B-cell development and the establishment of a broad IgH repertoire. Second, we show that SATB1 exhibits an ambivalent function in mature B cells, acting sequentially as a positive and negative regulator of Ig gene transcription in naive and activated cells, respectively. Third, our study indicates that the negative regulatory function of SATB1 in B cells extends to the germinal center response, in which this factor limits somatic hypermutation of Ig genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Raw data from RNA-seq, SHM, Rep-Seq, and 3C-HTGTS have been deposited in the European Nucleotide Archive database under accession number PRJEB52320.

References

  1. Dickinson L, Tadashi J, Yoshinori K, Terumi K-S. A tissue-specific MARSAR DNA-binding protein with unusual binding site recognition. Cell. 1992;70:631–45.

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 2000;14:521–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cai S, Han H-J, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expession regulated by SATB1. Nat Genet. 2003;34:42–51.

    Article  CAS  PubMed  Google Scholar 

  4. Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature. 2002;419:641–5.

    Article  CAS  PubMed  Google Scholar 

  5. Cai S, Lee CC, Kohwi-Shigematsu T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet. 2006;38:1278–88.

    Article  CAS  PubMed  Google Scholar 

  6. Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han H-J, Botchkarev VA, Kohwi Y. Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol. 2013;23:72–9.

    Article  CAS  PubMed  Google Scholar 

  7. Zelenka T, Spilianakis C. SATB1-mediated chromatin landscape in T cells. Nucl Austin Tex. 2020;11:117–31.

    CAS  Google Scholar 

  8. Wang Z, Yang X, Chu X, Zhang J, Zhou H, Shen Y, et al. The structural basis for the oligomerization of the N-terminal domain of SATB1. Nucleic Acids Res. 2012;40:4193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Purbey PK, Singh S, Kumar PP, Mehta S, Ganesh KN, Mitra D, et al. PDZ domain-mediated dimerization and homeodomain-directed specificity are required for high-affinity DNA binding by SATB1. Nucleic Acids Res. 2008;36:2107–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamasaki K, Akiba T, Yamasaki T, Harata K. Structural basis for recognition of the matrix attachment region of DNA by transcription factor SATB1. Nucleic Acids Res. 2007;35:5073–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Belle I, Cai S, Kohwi-Shigematsu T. The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J Cell Biol. 1998;141:335–48.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Seo J, Lozano MM, Dudley JP. Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J Biol Chem. 2005;280:24600–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh RP, Shi Q, Yang L, Reddick MP, Nikitina T, Zhurkin VB, et al. Satb1 integrates DNA binding site geometry and torsional stress to differentially target nucleosome-dense regions. Nat Commun. 2019;10. https://doi.org/10.1038/s41467-019-11118-8.

  14. Kumar PP, Purbey PK, Ravi DS, Mitra D, Galande S. Displacement of SATB1-Bound histone deacetylase 1 corepressor by the human immunodeficiency virus type 1 transactivator induces expression of interleukin-2 and its receptor in T cells. Mol Cell Biol. 2005;25:1620–33.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Galande S, Purbey PK, Notani D, Kumar PP. The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev. 2007;17:408–14.

    Article  CAS  PubMed  Google Scholar 

  16. Pavan Kumar P, Purbey PK, Sinha CK, Notani D, Limaye A, Jayani RS, et al. Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol Cell. 2006;22:231–43.

    Article  CAS  PubMed  Google Scholar 

  17. Purbey PK, Singh S, Notani D, Kumar PP, Limaye AS, Galande S. Acetylation-dependent interaction of SATB1 and CtBP1 mediates transcriptional repression by SATB1. Mol Cell Biol. 2009;29:1321–37.

    Article  CAS  PubMed  Google Scholar 

  18. Khare SP, Shetty A, Biradar R, Patta I, Chen ZJ, Sathe AV, et al. NF-κB signaling and IL-4 signaling regulate SATB1 expression via alternative promoter usage during Th2 differentiation. Front Immunol. 2019;10:667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patta I, Madhok A, Khare S, Gottimukkala KP, Verma A, Giri S, et al. Dynamic regulation of chromatin organizer SATB1 via TCR-induced alternative promoter switch during T-cell development. Nucleic Acids Res. 2020;48:5873–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Balamotis MA, Tamberg N, Woo YJ, Li J, Davy B, Kohwi-Shigematsu T, et al. Satb1 ablation alters temporal expression of immediate early genes and reduces dendritic spine density during postnatal brain development. Mol Cell Biol. 2012;32:333–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Will B, Vogler TO, Bartholdy B, Garrett-Bakelman F, Mayer J, Barreyro L, et al. Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nat Immunol. 2013;14:437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doi Y, Yokota T, Satoh Y, Okuzaki D, Tokunaga M, Ishibashi T, et al. Variable SATB1 levels regulate hematopoietic stem cell heterogeneity with distinct lineage fate. Cell Rep. 2018;23:3223–35.

    Article  CAS  PubMed  Google Scholar 

  23. Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW, et al. The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity. 2013;38:1105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wen J, Huang S, Rogers H, Dickinson LA, Kohwi-Shigematsu T, Noguchi CT. SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression. Blood. 2005;105:3330–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hawkins SM, Kohwi-Shigematsu T, Skalnik DG. The matrix attachment region-binding protein SATB1 interacts with multiple elements within the gp91phox promoter and is down-regulated during myeloid differentiation. J Biol Chem. 2001;276:44472–80.

    Article  CAS  PubMed  Google Scholar 

  26. Fujii Y, Kumatori A, Nakamura M. SATB1 makes a complex with p300 and represses gp91phox promoter activity. Microbiol Immunol. 2003;47:803–11.

    Article  CAS  PubMed  Google Scholar 

  27. Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene. 2019;38:1989–2004.

    Article  CAS  PubMed  Google Scholar 

  28. Papadogkonas G, Papamatheakis D-A, Spilianakis C. 3D genome organization as an epigenetic determinant of transcription regulation in T cells. Front Immunol. 2022;13:921375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kohwi-Shigematsu T, Maass K, Bode J. A thymocyte factor SATB1 suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. Biochemistry. 1997;36:12005–10.

    Article  CAS  PubMed  Google Scholar 

  30. Burute M, Gottimukkala K, Galande S. Chromatin organizer SATB1 is an important determinant of T-cell differentiation. Immunol Cell Biol. 2012;90:852–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kakugawa K, Kojo S, Tanaka H, Seo W, Endo TA, Kitagawa Y, et al. Essential roles of SATB1 in specifying T lymphocyte subsets. Cell Rep. 2017;19:1176–88.

    Article  CAS  PubMed  Google Scholar 

  32. Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K, Kawakami R, et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat Immunol. 2017;18:173–83.

    Article  CAS  PubMed  Google Scholar 

  33. Hao B, Naik AK, Watanabe A, Tanaka H, Chen L, Richards HW, et al. An anti-silencer– and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development. J Exp Med. 2015;212:809–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng D, Li Z, Qin L, Hao B. The role of chromatin organizer Satb1 in shaping TCR repertoire in adult thymus. Genome. 2021;64:821–32.

    Article  CAS  PubMed  Google Scholar 

  35. Ozawa T, Fujii K, Sudo T, Doi Y, Nakai R, Shingai Y, et al. Special AT-rich sequence-binding protein 1 supports survival and maturation of naive B cells stimulated by B cell receptors. J Immunol. 2022;208:1937–46.

    Article  CAS  PubMed  Google Scholar 

  36. Hobeika E, Thiemann S, Storch B, Jumaa H, Nielsen PJ, Pelanda R, et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc Natl Acad Sci USA. 2006;103:13789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin OA, Garot A, Le Noir S, Aldigier J-C, Cogné M, Pinaud E, et al. Detecting rare AID-induced mutations in B-lineage oncogenes from high-throughput sequencing data using the detection of minor variants by error correction method. J Immunol. 2018;201:950–6.

    Article  CAS  PubMed  Google Scholar 

  38. Tinguely A, Chemin G, Péron S, Sirac C, Reynaud S, Cogné M, et al. Cross talk between immunoglobulin heavy-chain transcription and RNA surveillance during B cell development. Mol Cell Biol. 2012;32:107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pascal V, Dupont M, de Rouault P, Rizzo D, Rossille D, Jeannet R, et al. Demultiplexing Ig repertoires by parallel mRNA/DNA sequencing shows major differential alterations in severe COVID-19. iScience. 2023;26:106260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ouk C, Roland L, Gachard N, Poulain S, Oblet C, Rizzo D, et al. Continuous MYD88 activation is associated with expansion and then transformation of IgM differentiating plasma cells. Front Immunol. 2021;12:641692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turchaninova MA, Davydov A, Britanova OV, Shugay M, Bikos V, Egorov ES, et al. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat Protoc. 2016;11:1599–616.

    Article  CAS  PubMed  Google Scholar 

  42. Javaugue V, Pascal V, Bender S, Nasraddine S, Dargelos M, Alizadeh M, et al. RNA-based immunoglobulin repertoire sequencing is a new tool for the management of monoclonal gammopathy of renal (kidney) significance. Kidney Int. 2022;101:331–7.

    Article  CAS  PubMed  Google Scholar 

  43. Boice M, Salloum D, Mourcin F, Sanghvi V, Amin R, Oricchio E, et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells. Cell. 2016;167:405–18.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  45. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  46. Varet H, Brillet-Guéguen L, Coppée J-Y, Dillies M-A. SARTools: a DESeq2- and EdgeR-Based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS One. 2016;11:e0157022.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Yoon HS, Chapdelaine-Williams AM, Kyritsis N, Alt FW. Physiological role of the 3’IgH CBEs super-anchor in antibody class switching. Proc Natl Acad Sci USA. 2021;118:e2024392118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu J, Meyers RM, Dong J, Panchakshari RA, Alt FW, Frock RL. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat Protoc. 2016;11:853–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. The Immunological Genome Project Consortium, Heng TSP, Painter MW, Elpek K, Lukacs-Kornek V, Mauermann N, et al. The immunological genome project: networks of gene expression in immune cells. Nat Immunol. 2008;9:1091–4.

    Article  Google Scholar 

  51. Yoshida H, Lareau CA, Ramirez RN, Rose SA, Maier B, Wroblewska A, et al. The cis-regulatory atlas of the mouse immune system. Cell. 2019;176:897–912. e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kohwi-Shigematsu T, Kohwi Y, Takahashi K, Richards HW, Ayers SD, Han H-J, et al. SATB1-mediated functional packaging of chromatin into loops. Methods. 2012;58:243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feng D, Chen Y, Dai R, Bian S, Xue W, Zhu Y, et al. Chromatin organizer SATB1 controls the cell identity of CD4+ CD8+ double-positive thymocytes by regulating the activity of super-enhancers. Nat Commun. 2022;13:5554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zelenka T, Klonizakis A, Tsoukatou D, Papamatheakis D-A, Franzenburg S, Tzerpos P, et al. The 3D enhancer network of the developing T cell genome is shaped by SATB1. Nat Commun. 2022;13:6954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dickinson LA, Dickinson CD, Kohwi-Shigematsu T. An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region. J Biol Chem. 1997;272:11463–70.

    Article  CAS  PubMed  Google Scholar 

  56. Dickinson LA, Kohwi-Shigematsu T. Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential. Mol Cell Biol. 1995;15:456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marquet M, Garot A, Bender S, Carrion C, Rouaud P, Lecardeur S, et al. The Eμ enhancer region influences H chain expression and B cell fate without impacting IgVH repertoire and immune response in vivo. J Immunol Balt Md 1950. 2014;193:1171–83.

    CAS  Google Scholar 

  58. Xu Y, Davidson L, Alt FW, Baltimore D. Deletion of the Ig kappa light chain intronic enhancer/matrix attachment region impairs but does not abolish V kappa J kappa rearrangement. Immunity. 1996;4:377–85.

    Article  CAS  PubMed  Google Scholar 

  59. Yi M, Wu P, Trevorrow KW, Claflin L, Garrard WT. Evidence that the Igkappa gene MAR regulates the probability of premature V-J joining and somatic hypermutation. J Immunol Balt Md 1950. 1999;162:6029–39.

    CAS  Google Scholar 

  60. Sakai E, Bottaro A, Davidson L, Sleckman BP, Alt FW. Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions. Proc Natl Acad Sci USA. 1999;96:1526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Garot A, Marquet M, Saintamand A, Bender S, Le Noir S, Rouaud P, et al. Sequential activation and distinct functions for distal and proximal modules within the IgH 3’ regulatory region. Proc Natl Acad Sci USA. 2016;113:1618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Inlay M, Alt FW, Baltimore D, Xu Y. Essential roles of the kappa light chain intronic enhancer and 3’ enhancer in kappa rearrangement and demethylation. Nat Immunol. 2002;3:463–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bruzeau C, Moreau J, Le Noir S, Pinaud E. Panorama of stepwise involvement of the IgH 3’ regulatory region in murine B cells. Adv Immunol. 2021;149:95–114.

    Article  CAS  PubMed  Google Scholar 

  64. Yokota T, Kanakura Y. Role of tissue-specific AT-rich DNA sequence-binding proteins in lymphocyte differentiation. Int J Hematol. 2014;100:238–45.

    Article  CAS  PubMed  Google Scholar 

  65. Martin OA, Thomas M, Marquet M, Bruzeau C, Garot A, Brousse M, et al. The IgH Eµ-MAR regions promote UNG-dependent error-prone repair to optimize somatic hypermutation. Front Immunol. 2023;14:1030813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cumano A, Rajewsky K. Clonal recruitment and somatic mutation in the generation of immunological memory to the hapten NP. EMBO J. 1986;5:2459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martin O, Thomas M, Marquet M, Garot A, Brousse M, Bender S et al. The IgH -MAR regions promote UNG-dependent error-prone repair to optimize somatic hypermutation. Immunology. 2022. https://doi.org/10.1101/2022.08.15.503996.

  68. Reth M, Hämmerling GJ, Rajewsky K. Analysis of the repertoire of anti-NP antibodies in C57BL/6 mice by cell fusion. I. Characterization of antibody families in the primary and hyperimmune response. Eur J Immunol. 1978;8:393–400.

    Article  CAS  PubMed  Google Scholar 

  69. Fukita Y, Jacobs H, Rajewsky K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity. 1998;9:105–14.

    Article  CAS  PubMed  Google Scholar 

  70. Zelenka T, Tzerpos P, Panagopoulos G, Tsolis KC, Papamatheakis D-A, Papadakis VM et al. SATB1 undergoes isoform-specific phase transitions in T cells. Front. Cell Dev. Biol. 2022;11. https://doi.org/10.3389/fcell.2023.1242481.

  71. Kaur S, Coulombe Y, Ramdzan ZM, Leduy L, Masson J-Y, Nepveu A. Special AT-rich sequence-binding Protein 1 (SATB1) functions as an accessory factor in base excision repair. J Biol Chem. 2016;291:22769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Winter DB, Phung QH, Zeng X, Seeberg E, Barnes DE, Lindahl T, et al. Normal somatic hypermutation of Ig genes in the absence of 8-hydroxyguanine-DNA glycosylase. J Immunol Balt Md 1950. 2003;170:5558–62.

    CAS  Google Scholar 

  73. Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A, et al. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol. 2007;9:45–56.

    Article  PubMed  Google Scholar 

  74. Tan J-AT, Sun Y, Song J, Chen Y, Krontiris TG, Durrin LK. SUMO conjugation to the matrix attachment region-binding protein, special AT-rich sequence-binding protein-1 (SATB1), targets SATB1 to promyelocytic nuclear bodies where it undergoes caspase cleavage. J Biol Chem. 2008;283:18124–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang Y, Zhang X, Dai H-Q, Hu H, Alt FW. The role of chromatin loop extrusion in antibody diversification. Nat Rev Immunol. 2022;22:550–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the BISCEm unit (Univ. Limoges, UAR 2015 CNRS, US 42 Inserm, CHU Limoges) for technical support regarding DNA‒RNA sequencing, cytometry experiments and the animal core facility. We are grateful to Emeline Lhuillier and the Genotoul Plateau GeT-Santé facility (https://get.genotoul.fr) for technical assistance with RNA sequencing, to Mehdi Alizadeh from Etablissement Français du Sang (Rennes; France) for assistance with Repertoire sequencing and to Christelle Oblet for technical help with Western blotting. This work benefitted from data assembled by the ImmGen consortium [50]. MT, CB and OM were supported by PhD fellowships from the French Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation and the Fonds Européen de Développement Régional (FEDER). This work was supported by La Ligue Contre le Cancer (comités 87, 23 to EP and SLN); the Fondation ARC pour la recherche sur le cancer (PJA 20181207918 to EP and PhD continuation fellowship to MT and CB), Institut CARNOT CALYM, INCa-Cancéropôle GSO Emergence (to EP). We are grateful to Drs. Charalampos Spilianakis, Jeanne Moreau and Amélie Bonaud for critical reading of the manuscript, helpful comments and edits.

Author information

Authors and Affiliations

Authors

Contributions

MT, CB, OM, SB, and CC performed the experiments. MT analyzed the data. EP and SLN conceived and supervised the study. MT and OM developed the experimental model. JP performed the bioinformatic analysis. MT, CB, EP, and SLN wrote the manuscript.

Corresponding authors

Correspondence to Sandrine Le Noir or Eric Pinaud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, M., Bruzeau, C., Martin, O.A. et al. A dual function for the chromatin organizer Special A-T rich Binding Protein 1 in B-lineage cells. Cell Mol Immunol 20, 1114–1126 (2023). https://doi.org/10.1038/s41423-023-01069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-01069-y

Keywords

Search

Quick links