Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The deacetylase SIRT2 contributes to autoimmune disease pathogenesis by modulating IL-17A and IL-2 transcription

Abstract

Aberrant IL-17A expression together with reduced IL-2 production by effector CD4+ T cells contributes to the pathogenesis of systemic lupus erythematosus (SLE). Here, we report that Sirtuin 2 (SIRT2), a member of the family of NAD+-dependent histone deacetylases, suppresses IL-2 production by CD4+ T cells while promoting their differentiation into Th17 cells. Mechanistically, we show that SIRT2 is responsible for the deacetylation of p70S6K, activation of the mTORC1/HIF-1α/RORγt pathway and induction of Th17-cell differentiation. Additionally, SIRT2 was shown to be responsible for the deacetylation of c-Jun and histones at the Il-2 gene, resulting in decreased IL-2 production. We found that the transcription factor inducible cAMP early repressor (ICER), which is overexpressed in T cells from people with SLE and lupus-prone mice, bound directly to the Sirt2 promoter and promoted its transcription. AK-7, a SIRT2 inhibitor, limited the ability of adoptively transferred antigen-specific CD4+ T cells to cause autoimmune encephalomyelitis in mice and limited disease in lupus-prone MRL/lpr mice. Finally, CD4+ T cells from SLE patients exhibited increased expression of SIRT2, and pharmacological inhibition of SIRT2 in primary CD4+ T cells from patients with SLE attenuated the ability of these cells to differentiate into Th17 cells and promoted the generation of IL-2–producing T cells. Collectively, these results suggest that SIRT2-mediated deacetylation is essential in the aberrant expression of IL-17A and IL-2 and that SIRT2 may be a promising molecular target for new SLE therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SIRT2 is induced in Th17 cells and promotes their differentiation.
Fig. 2: ICERγ binds to the Sirt2 promoter directly and increases its activity.
Fig. 3: SIRT2 deacetylates p70S6K and regulates the mTORC1/HIF-1α/RORγt pathway.
Fig. 4: SIRT2 inhibits IL-2 production by CD4+ T cells via deacetylation of c-Jun and histones at the Il-2 locus.
Fig. 5: Treatment with the SIRT2 inhibitor AK-7 ameliorates disease severity in adoptive transfer EAE.
Fig. 6: Treatment with the SIRT2 inhibitor AK-7 ameliorates lupus-like disease.
Fig. 7: Treatment with a SIRT2 inhibitor suppresses IL-17A and promotes IL-2 production in CD4+ T cells from patients with SLE.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Materials.

References

  1. Tsokos GC. Systemic lupus erythematosus. N. Engl J Med. 2011;365:2110–21.

    Article  CAS  PubMed  Google Scholar 

  2. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21:605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderton SM. Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol. 2004;16:753–8.

    Article  CAS  PubMed  Google Scholar 

  4. Cloos PA, Christgau S. Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology. 2004;5:139–58.

    Article  CAS  PubMed  Google Scholar 

  5. Xia C, Tao Y, Li M, Che T, Qu J. Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review). Exp Ther Med. 2020;20:2923–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sebastian C, Satterstrom FK, Haigis MC, Mostoslavsky R. From sirtuin biology to human diseases: an update. J Biol Chem. 2012;287:42444–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev. 2019;55:100961.

    Article  CAS  PubMed  Google Scholar 

  8. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496:461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Petrackova A, Smrzova A, Gajdos P, Schubertova M, Schneiderova P, Kromer P, et al. Serum protein pattern associated with organ damage and lupus nephritis in systemic lupus erythematosus revealed by PEA immunoassay. Clin Proteom. 2017;14:32.

    Article  CAS  Google Scholar 

  10. Hedrich CM, Crispin JC, Rauen T, Ioannidis C, Apostolidis SA, Lo MS, et al. cAMP response element modulator alpha controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci USA. 2012;109:16606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshida N, Comte D, Mizui M, Otomo K, Rosetti F, Mayadas TN, et al. ICER is requisite for Th17 differentiation. Nat Commun. 2016;7:12993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA. 2005;102:4459–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen PM, Wilson PC, Shyer JA, Veselits M, Steach HR, Cui C, et al. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci Transl Med. 2020;12:eaay1620.

  14. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146:772–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR. mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene. 2015;34:2239–50.

    Article  CAS  PubMed  Google Scholar 

  16. Hong S, Zhao B, Lombard DB, Fingar DC, Inoki K. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem. 2014;289:13132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002;109:719–31.

    Article  CAS  PubMed  Google Scholar 

  18. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072:129–57.

    CAS  PubMed  Google Scholar 

  19. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 2005;33:e176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xu F, Zhang Q, Zhang K, Xie W, Grunstein M. Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Mol Cell. 2007;27:890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hedrich CM, Rauen T, Tsokos GC. cAMP-responsive element modulator (CREM)alpha protein signaling mediates epigenetic remodeling of the human interleukin-2 gene: implications in systemic lupus erythematosus. J Biol Chem. 2011;286:43429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26:371–81.

    Article  CAS  PubMed  Google Scholar 

  23. Katsuyama T, Tsokos GC, Moulton VR. Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front Immunol. 2018;9:1088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Moulton VR, Tsokos GC. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest. 2015;125:2220–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol. 2008;127:385–93.

    Article  CAS  PubMed  Google Scholar 

  26. Chen DY, Chen YM, Wen MC, Hsieh TY, Hung WT, Lan JL. The potential role of Th17 cells and Th17-related cytokines in the pathogenesis of lupus nephritis. Lupus. 2012;21:1385–96.

    Article  PubMed  CAS  Google Scholar 

  27. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  28. Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20:74–88.

    Article  CAS  PubMed  Google Scholar 

  29. Lim J, Son J, Ryu J, Kim JE. SIRT2 affects primary cilia formation by regulating mTOR signaling in retinal pigmented epithelial cells. Int J Mol Sci. 2020;21:2240.

  30. Sasaki CY, Chen G, Munk R, Eitan E, Martindale J, Longo DL, et al. p((7)(0)S(6)K(1)) in the TORC1 pathway is essential for the differentiation of Th17 Cells, but not Th1, Th2, or Treg cells in mice. Eur J Immunol. 2016;46:212–22.

    Article  CAS  PubMed  Google Scholar 

  31. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12:180–90.

    Article  CAS  PubMed  Google Scholar 

  32. Altman A, Theofilopoulos AN, Weiner R, Katz DH, Dixon FJ. Analysis of T cell function in autoimmune murine strains. Defects in production and responsiveness to interleukin 2. J Exp Med. 1981;154:791–808.

    Article  CAS  PubMed  Google Scholar 

  33. Alcocer-Varela J, Alarcon-Segovia D. Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus. J Clin Invest. 1982;69:1388–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Disco. 2018;17:823–44.

    Article  CAS  Google Scholar 

  35. Zhang J, Lee SM, Shannon S, Gao B, Chen W, Chen A, et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest. 2009;119:3048–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimko JC, North JA, Bruns AN, Poirier MG, Ottesen JJ. Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J Mol Biol. 2011;408:187–204.

    Article  CAS  PubMed  Google Scholar 

  37. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA. 2003;100:2610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317:516–9.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao T, Alam HB, Liu B, Bronson RT, Nikolian VC, Wu E, et al. Selective Inhibition of SIRT2 Improves Outcomes in a Lethal Septic Model. Curr Mol Med. 2015;15:634–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee YG, Reader BF, Herman D, Streicher A, Englert JA, Ziegler M, et al. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight. 2019;4:e124710.

  41. Liu Y, Ao L, Li Y, Zhao Y, Wen Y, Ding H. The SIRT2 inhibitor AK-7 decreases cochlear cell apoptosis and attenuates noise-induced hearing loss. Biochem Biophys Res Commun. 2019;509:641–6.

    Article  CAS  PubMed  Google Scholar 

  42. Xu Y, Cai R, Zhao Z, Zhou L, Zhou Q, Hassan S, et al. Thiomyristoyl ameliorates colitis by blocking the differentiation of Th17 cells and inhibiting SIRT2-induced metabolic reprogramming. Int Immunopharmacol. 2021;90:107212.

    Article  CAS  PubMed  Google Scholar 

  43. Yuan F, Xu ZM, Lu LY, Nie H, Ding J, Ying WH, et al. SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-kappaB p65 acetylation and activation. J Neurochem. 2016;136:581–93.

    Article  CAS  PubMed  Google Scholar 

  44. Tang X, Chen XF, Wang NY, Wang XM, Liang ST, Zheng W, et al. SIRT2 Acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation. 2017;136:2051–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qu ZA, Ma XJ, Huang SB, Hao XR, Li DM, Feng KY, et al. SIRT2 inhibits oxidative stress and inflammatory response in diabetic osteoarthritis. Eur Rev Med Pharm Sci. 2020;24:2855–64.

    Google Scholar 

  46. Chowdhury S, Sripathy S, Webster A, Park A, Lao U, Hsu JH, et al. Discovery of selective SIRT2 inhibitors as therapeutic agents in B-Cell lymphoma and other malignancies. Molecules. 2020;25:455.

  47. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.

    Article  CAS  PubMed  Google Scholar 

  48. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992;35:630–40.

    Article  CAS  PubMed  Google Scholar 

  49. Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E, Schutz G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature. 1996;380:162–5.

    Article  CAS  PubMed  Google Scholar 

  50. Nguyen HX, Beck KD, Anderson AJ. Quantitative assessment of immune cells in the injured spinal cord tissue by flow cytometry: a novel use for a cell purification method. J Vis Exp. 2011;50:2698.

  51. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest. 2015;125:194–207.

    Article  PubMed  Google Scholar 

  52. Koga T, Hedrich CM, Mizui M, Yoshida N, Otomo K, Lieberman LA, et al. CaMK4-dependent activation of AKT/mTOR and CREM-alpha underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124:2234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by NIH grant R37 AI49954 (to GCT); the Uehara memorial foundation (to RH); the 2019 Gilead Sciences Research Scholars Program in Rheumatology (to NY); and the Société Française de Rhumatologie, the Arthur-Sachs & Monahan fellowships and the Philippe Foundation (to MS).

Author information

Authors and Affiliations

Authors

Contributions

RH, NY, and GCT conceived and designed the study. RH, MU, CB, RB, MK, and NY performed the experiments and data analysis and interpretation. VCK and SK provided human samples. RH, NY, MS, and GCT drafted the manuscript.

Corresponding author

Correspondence to George C. Tsokos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hisada, R., Yoshida, N., Umeda, M. et al. The deacetylase SIRT2 contributes to autoimmune disease pathogenesis by modulating IL-17A and IL-2 transcription. Cell Mol Immunol 19, 738–750 (2022). https://doi.org/10.1038/s41423-022-00874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00874-1

Keywords

This article is cited by

Search

Quick links