Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone methyltransferase Nsd2 ensures maternal–fetal immune tolerance by promoting regulatory T-cell recruitment

Abstract

Regulatory T cells (Tregs) are fundamentally important for maintaining systemic immune homeostasis and are also required for immune tolerance at the maternal–fetal interface during pregnancy. Recent studies have suggested that epigenetic regulation is critically involved in Treg development and function. However, the role of H3K36me has not yet been investigated. Here, we found that the H3K36me2 methyltransferase Nsd2 was highly expressed in Tregs. Although loss of Nsd2 did not impair systemic Treg development or function, the level of Tregs at the maternal–fetal interface was significantly decreased in pregnant Nsd2 conditional knockout mice. Consequently, maternal–fetal immune tolerance was disrupted in the absence of Nsd2 in Tregs, and the pregnant mice showed severe fetal loss. Mechanistically, Nsd2 was found to upregulate CXCR4 expression via H3K36me2 modification to promote Treg cell recruitment into the decidua and suppress the anti-fetal immune response. Overall, our data identified Nsd2 as a critical epigenetic regulator of Treg recruitment for maternal–fetal tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T cells and human disease. Annu Rev Immunol. 2020;38:541–66.

    Article  CAS  PubMed  Google Scholar 

  3. Savage PA, Klawon DEJ, Miller CH. Regulatory T cell development. Annu Rev Immunol. 2020;38:421–53.

    Article  CAS  PubMed  Google Scholar 

  4. Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol. 2009;10:689–95.

    Article  CAS  PubMed  Google Scholar 

  5. DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D, et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity. 2015;42:227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Placek K, Hu G, Cui K, Zhang D, Ding Y, Lee JE, et al. MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat Immunol. 2017;18:1035–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Husmann D, Gozani O. Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol. 2019;26:880–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012;13:115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Li N, Yin Y, Zheng N, Min M, Lin B, et al. Methyltransferase Nsd2 ensures germinal center selection by promoting adhesive interactions between B cells and follicular dendritic cells. Cell Rep. 2018;25:3393–404.e6.

    Article  CAS  PubMed  Google Scholar 

  10. Long X, Zhang L, Zhang Y, Min M, Lin B, Chen J, et al. Histone methyltransferase Nsd2 is required for follicular helper T cell differentiation. J Exp Med. 2019;217:e20190832.

    Article  PubMed Central  CAS  Google Scholar 

  11. Deshmukh H, Way SS. Immunological basis for recurrent fetal loss and pregnancy complications. Annu Rev Pathol. 2019;14:185–210.

    Article  CAS  PubMed  Google Scholar 

  12. Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013;31:387–411.

    Article  CAS  PubMed  Google Scholar 

  13. PrabhuDas M, Bonney E, Caron K, Dey S, Erlebacher A, Fazleabas A, et al. Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat Immunol. 2015;16:328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017;17:469–82.

    Article  CAS  PubMed  Google Scholar 

  15. Arck PC, Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med. 2013;19:548–56.

    Article  CAS  PubMed  Google Scholar 

  16. Zenclussen AC. CD4(+)CD25+ T regulatory cells in murine pregnancy. J Reprod Immunol. 2005;65:101–10.

    Article  CAS  PubMed  Google Scholar 

  17. Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266–71.

    Article  CAS  PubMed  Google Scholar 

  18. Morita K, Tsuda S, Kobayashi E, Hamana H, Tsuda K, Shima T, et al. Analysis of TCR repertoire and PD-1 expression in decidual and peripheral CD8(+) T cells reveals distinct immune mechanisms in miscarriage and preeclampsia. Front Immunol. 2020;11:1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Investig. 2018;128:4224–35.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sasaki Y. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004;10:347–53.

    Article  CAS  PubMed  Google Scholar 

  21. Tsuda S, Zhang X, Hamana H, Shima T, Ushijima A, Tsuda K, et al. Clonally expanded decidual effector regulatory T cells increase in late gestation of normal pregnancy, but not in preeclampsia, in humans. Front Immunol. 2018;9:1934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Munoz-Suano A, Hamilton AB, Betz AG. Gimme shelter: the immune system during pregnancy. Immunological Rev. 2011;241:20–38.

    Article  CAS  Google Scholar 

  23. Winger EE, Reed JL. Low circulating CD4+ CD25+ Foxp3+ T regulatory cell levels predict miscarriage risk in newly pregnant women with a history of failure. Am J Reprod Immunol. 2011;66:320–8.

    Article  CAS  PubMed  Google Scholar 

  24. Toldi G, Saito S, Shima T, Halmos A, Veresh Z, Vásárhelyi B, et al. The frequency of peripheral blood CD4+ CD25high FoxP3+ and CD4+ CD25− FoxP3+ regulatory T cells in normal pregnancy and pre-eclampsia. Am J Reprod Immunol. 2012;68:175–80.

    Article  CAS  PubMed  Google Scholar 

  25. Saito S, Nakashima A, Shima T, Ito M. REVIEW ARTICLE: Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63:601–10.

    Article  CAS  PubMed  Google Scholar 

  26. Inada K, Shima T, Ito M, Ushijima A, Saito S. Helios-positive functional regulatory T cells are decreased in decidua of miscarriage cases with normal fetal chromosomal content. J Reprod Immunol. 2015;107:10–9.

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki Y, Darmochwal-Kolarz D, Suzuki D, Sakai M, Ito M, Shima T, et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin Exp Immunol. 2007;149:139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santner-Nanan B, Peek MJ, Khanam R, Richarts L, Zhu E, Fazekas de St Groth B, et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol. 2009;183:7023–30.

    Article  CAS  PubMed  Google Scholar 

  29. Rowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012;490:102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell. 2012;150:29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kopřivová H, Hájková M, Koucký M, Malíčková K, Holáň V, Krulová M. Kinetics of Helios(+) and Helios(-) T regulatory cell subsets in the circulation of healthy pregnant women. Scand J Immunol. 2019;89:e12754.

    Article  PubMed  CAS  Google Scholar 

  32. Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266–71.

    Article  CAS  PubMed  Google Scholar 

  33. Kallikourdis M, Andersen KG, Welch KA, Betz AG. Alloantigen-enhanced accumulation of CCR5+ ‘effector’ regulatory T cells in the gravid uterus. Proc Natl Acad Sci USA. 2007;104:594–9.

    Article  CAS  PubMed  Google Scholar 

  34. Lin Y, Xu L, Jin H, Zhong Y, Di J, Lin Q. CXCL12 enhances exogenous CD4+CD25+ T cell migration and prevents embryo loss in non-obese diabetic mice. Fertil Steril. 2009;91:2687–96.

    Article  CAS  PubMed  Google Scholar 

  35. Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson SA. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment1. Biol Reprod. 2011;85:397–408.

    Article  CAS  PubMed  Google Scholar 

  36. Care AS, Bourque SL, Morton JS, Hjartarson EP, Robertson SA, Davidge ST. Reduction in regulatory T cells in early pregnancy causes uterine artery dysfunction in mice. Hypertension. 2018;72:177–87.

    Article  CAS  PubMed  Google Scholar 

  37. Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R, et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood. 2003;102:1569–77.

    Article  CAS  PubMed  Google Scholar 

  38. Maghazachi AA. Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol. 2010;341:37–58.

    CAS  PubMed  Google Scholar 

  39. Wu X, Jin LP, Yuan MM, Zhu Y, Wang MY, Li DJ. Human first-trimester trophoblast cells recruit CD56brightCD16- NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J Immunol. 2005;175:61–8.

    Article  CAS  PubMed  Google Scholar 

  40. Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S, Ding L, et al. CD150(high) bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell. 2018;22:445–53.e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Das A, Agrawal NR, Zangmo R, Roy KK, Singh K, Bala R. Comparison of expression of chemokine receptor 4 in maternal decidua and chorionic Villi in women with spontaneous miscarriages and women opting for termination of viable pregnancies. J Hum Reprod Sci. 2021;14:68–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang Q, Vincenti F. Transplant trials with Tregs: perils and promises. J Clin Investig. 2017;127:2505–12.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sánchez-Fueyo A, Whitehouse G, Grageda N, Cramp ME, Lim TY, Romano M, et al. Applicability, safety, and biological activity of regulatory T cell therapy in liver transplantation. Am J Transplant. 2020;20:1125–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J, et al. Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care. 2012;35:1817–20.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zenclussen AC, Gerlof K, Zenclussen ML, Sollwedel A, Bertoja AZ, Ritter T, et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T Regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol. 2005;166:811–22.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Woidacki K, Meyer N, Schumacher A, Goldschmidt A, Maurer M, Zenclussen AC. Transfer of regulatory T cells into abortion-prone mice promotes the expansion of uterine mast cells and normalizes early pregnancy angiogenesis. Sci Rep. 2015;5:13938.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu Y, Zhao M, Xu X, Liu X, Zhang H, Jiang Y, et al. Adoptive transfer of Treg cells counters adverse effects of Toxoplasma gondii infection on pregnancy. J Infect Dis. 2014;210:1435–43.

    Article  CAS  PubMed  Google Scholar 

  48. Arenas-Hernandez M, Sanchez-Rodriguez EN, Mial TN, Robertson SA, Gomez-Lopez N. Isolation of leukocytes from the murine tissues at the maternal-fetal interface. J Vis Ex. 2015;99:e52866.

    Google Scholar 

  49. Fu B, Li X, Sun R, Tong X, Ling B, Tian Z, et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proc Natl Acad Sci USA. 2013;110:E231–40.

    CAS  PubMed  Google Scholar 

  50. Allen CDC, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N, et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol. 2004;5:943–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Haiming Wei and Dr. Bingqing Fu (University of Science and Technology of China) for technical help with the decidual cell preparation and invaluable discussion.

Funding

This study was supported by the National Key R&D Program of China (2018YFC1003900), the National Natural Science Foundation of China (Grant Number 82001653 to LZ and 31970828 to XW) and Jiangsu Outstanding Young Investigator Program (BK20200030).

Author information

Authors and Affiliations

Authors

Contributions

LZ, YC, and XW conceptualized the project, designed the experimental approaches, analyzed the data, and prepared the paper. LZ, XL, YY, YW, and JW performed most of the experiments.

Corresponding authors

Correspondence to Yun Chen or Xiaoming Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Long, X., Yin, Y. et al. Histone methyltransferase Nsd2 ensures maternal–fetal immune tolerance by promoting regulatory T-cell recruitment. Cell Mol Immunol 19, 634–643 (2022). https://doi.org/10.1038/s41423-022-00849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00849-2

Keywords

This article is cited by

Search

Quick links