Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STING signaling activation inhibits HBV replication and attenuates the severity of liver injury and HBV-induced fibrosis

Abstract

The covalently closed circular DNA (cccDNA) of HBV plays a crucial role in viral persistence and is also a risk factor for developing HBV-induced diseases, including liver fibrosis. Stimulator of interferon genes (STING), a master regulator of DNA-mediated innate immune activation, is a potential therapeutic target for viral infection and virus-related diseases. In this study, agonist-induced STING signaling activation in macrophages was revealed to inhibit cccDNA-mediated transcription and HBV replication via epigenetic modification in hepatocytes. Notably, STING activation could efficiently attenuate the severity of liver injury and fibrosis in a chronic recombinant cccDNA (rcccDNA) mouse model, which is a proven suitable research platform for HBV-induced fibrosis. Mechanistically, STING-activated autophagic flux could suppress macrophage inflammasome activation, leading to the amelioration of liver injury and HBV-induced fibrosis. Overall, the activation of STING signaling could inhibit HBV replication through epigenetic suppression of cccDNA and alleviate HBV-induced liver fibrosis through the suppression of macrophage inflammasome activation by activating autophagic flux in a chronic HBV mouse model. This study suggests that targeting the STING signaling pathway may be an important therapeutic strategy to protect against persistent HBV replication and HBV-induced fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Seto WK, Lo YR, Pawlotsky JM, Yuen MF. Chronic hepatitis B virus infection. Lancet. 2018;392:2313–24.

    Article  PubMed  Google Scholar 

  2. Trepo C, Chan HL, Lok A. Hepatitis B virus infection. Lancet. 2014;384:2053–63.

    Article  CAS  PubMed  Google Scholar 

  3. Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Asp Med. 2019;65:37–55.

    Article  CAS  Google Scholar 

  4. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14:181–94.

    Article  CAS  PubMed  Google Scholar 

  5. Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. 2015;64:1972–84.

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed M, Wang F, Levin A, Le C, Eltayebi Y, Houghton M, et al. Targeting the Achilles heel of the hepatitis B virus: a review of current treatments against covalently closed circular DNA. Drug Discov Today. 2015;20:548–61.

    Article  CAS  PubMed  Google Scholar 

  7. Lenci I, Marcuccilli F, Tisone G, Di Paolo D, Tariciotti L, Ciotti M, et al. Total and covalently closed circular DNA detection in liver tissue of long-term survivors transplanted for HBV-related cirrhosis. Dig Liver Dis. 2010;42:578–84.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng PN, Liu WC, Tsai HW, Wu IC, Chang TT, Young KC. Association of intrahepatic cccDNA reduction with the improvement of liver histology in chronic hepatitis B patients receiving oral antiviral agents. J Med Virol. 2011;83:602–7.

    Article  CAS  PubMed  Google Scholar 

  9. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300–12.

    Article  CAS  PubMed  Google Scholar 

  10. Altamirano-Barrera A, Barranco-Fragoso B, Mendez-Sanchez N. Management strategies for liver fibrosis. Ann Hepatol. 2017;16:48–56.

    Article  CAS  PubMed  Google Scholar 

  11. Tao Y, Wang N, Qiu T, Sun X. The role of autophagy and NLRP3 inflammasome in liver fibrosis. Biomed Res Int. 2020;2020:7269150.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019;50:778–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barbier L, Ferhat M, Salamé E, Robin A, Herbelin A, Gombert JM, et al. Interleukin-1 family cytokines: keystones in liver inflammatory diseases. Front Immunol. 2019;10:2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karhadkar TR, Chen W, Gomer RH. Attenuated pulmonary fibrosis in sialidase-3 knockout (Neu3(-/-)) mice. Am J Physiol Lung Cell Mol Physiol. 2020;318:L165–L179.

    Article  CAS  PubMed  Google Scholar 

  15. Chen G, Sun L, Kato T, Okuda K, Martino MB, Abzhanova A, et al. IL-1beta dominates the promucin secretory cytokine profile in cystic fibrosis. J Clin Invest. 2019;129:4433–50.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li G, Zhu Y, Shao D, Chang H, Zhang X, Zhou D, et al. Recombinant covalently closed circular DNA of hepatitis B virus induces long-term viral persistence with chronic hepatitis in a mouse model. Hepatology. 2018;67:56–70.

    Article  CAS  PubMed  Google Scholar 

  17. Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol. 2014;14:315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Altfeld M, Gale MJ. Innate immunity against HIV-1 infection. Nat Immunol. 2015;16:554–62.

    Article  CAS  PubMed  Google Scholar 

  19. Hu MM, Shu HB. Innate immune response to cytoplasmic DNA: mechanisms and diseases. Annu Rev Immunol. 2020;38:79–98.

    Article  CAS  PubMed  Google Scholar 

  20. Thomsen MK, Skouboe MK, Boularan C, Vernejoul F, Lioux T, Leknes SL, et al. The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma. Oncogene. 2020;39:1652–64.

    Article  CAS  PubMed  Google Scholar 

  21. Wieland SF, Chisari FV. Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol. 2005;79:9369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol. 2005;79:7269–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maini MK, Gehring AJ. The role of innate immunity in the immunopathology and treatment of HBV infection. J Hepatol. 2016;64:S60–S70.

    Article  CAS  PubMed  Google Scholar 

  24. Cui X, Zhang R, Cen S, Zhou J. STING modulators: predictive significance in drug discovery. Eur J Med Chem. 2019;182:111591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  CAS  Google Scholar 

  27. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11:997–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011;12:959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gui X, Yang H, Li T, Tan X, Shi P, Li M, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature. 2019;567:262–6.

    Article  CAS  PubMed  Google Scholar 

  30. Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2019;26:1735–49.

    Article  CAS  PubMed  Google Scholar 

  31. Han J, Bae J, Choi CY, Choi SP, Kang HS, Jo EK, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lodder J, Denaës T, Chobert MN, Wan J, El-Benna J, Pawlotsky JM, et al. Macrophage autophagy protects against liver fibrosis in mice. Autophagy. 2015;11:1280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leventhal DS, Sokolovska A, Li N, Plescia C, Kolodziej SA, Gallant CW, et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat Commun. 2020;11:2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miao L, Qi J, Zhao Q, Wu QN, Wei DL, Wei XL, et al. Targeting the STING pathway in tumor-associated macrophages regulates innate immune sensing of gastric cancer cells. Theranostics. 2020;10:498–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11:1018–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lio CW, McDonald B, Takahashi M, Dhanwani R, Sharma N, Huang J, et al. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. J Virol. 2016;90:7789–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reinert LS, Lopušná K, Winther H, Sun C, Thomsen MK, Nandakumar R, et al. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun. 2016;7:13348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ding Q, Cao X, Lu J, Huang B, Liu YJ, Kato N, et al. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J Hepatol. 2013;59:52–58.

    Article  CAS  PubMed  Google Scholar 

  40. Guo F, Han Y, Zhao X, Wang J, Liu F, Xu C, et al. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob Agents Chemother. 2015;59:1273–81.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guo F, Tang L, Shu S, Sehgal M, Sheraz M, Liu B, et al. Activation of stimulator of interferon genes in hepatocytes suppresses the replication of hepatitis B virus. Antimicrob Agents Chemother. 2017;61:e00771-17.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Li J, Chen J, Li Y, Wang W, Du X, et al. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J Virol. 2015;89:2287–300.

    Article  PubMed  Google Scholar 

  43. Thomsen MK, Nandakumar R, Stadler D, Malo A, Valls RM, Wang F, et al. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology. 2016;64:746–59.

    Article  CAS  PubMed  Google Scholar 

  44. Yu Y, Liu Y, An W, Song J, Zhang Y, Zhao X. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J Clin Invest. 2019;129:546–55.

    Article  PubMed  Google Scholar 

  45. Zhu Q, Hu H, Liu H, Shen H, Yan Z, Gao L. A synthetic STING agonist inhibits the replication of human parainfluenza virus 3 and rhinovirus 16 through distinct mechanisms. Antivir Res. 2020;183:104933.

    Article  CAS  PubMed  Google Scholar 

  46. Keskinen P, Nyqvist M, Sareneva T, Pirhonen J, Melén K, Julkunen I. Impaired antiviral response in human hepatoma cells. Virology. 1999;263:364–75.

    Article  CAS  PubMed  Google Scholar 

  47. Pollicino T, Belloni L, Raffa G, Pediconi N, Squadrito G, Raimondo G, et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology. 2006;130:823–37.

    Article  CAS  PubMed  Google Scholar 

  48. Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343:1221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hong X, Kim ES, Guo H. Epigenetic regulation of hepatitis B virus covalently closed circular DNA: Implications for epigenetic therapy against chronic hepatitis B. Hepatology. 2017;66:2066–77.

    Article  CAS  PubMed  Google Scholar 

  50. Rivière L, Gerossier L, Ducroux A, Dion S, Deng Q, Michel ML, et al. HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J Hepatol. 2015;63:1093–102.

    Article  PubMed  Google Scholar 

  51. Yang Y, Zhao X, Wang Z, Shu W, Li L, Li Y, et al. Nuclear sensor interferon-inducible protein 16 inhibits the function of hepatitis B virus covalently closed circular DNA by integrating innate immune activation and epigenetic suppression. Hepatology. 2020;71:1154–69.

    Article  CAS  PubMed  Google Scholar 

  52. Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386–9.

    Article  PubMed  Google Scholar 

  53. Tsai K, Cullen BR. Epigenetic and epitranscriptomic regulation of viral replication. Nat Rev Microbiol. 2020;18:559–70.

    Article  CAS  PubMed  Google Scholar 

  54. Giegerich AK, Kuchler L, Sha LK, Knape T, Heide H, Wittig I, et al. Autophagy-dependent PELI3 degradation inhibits proinflammatory IL1B expression. Autophagy. 2014;10:1937–52.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264–8.

    Article  CAS  PubMed  Google Scholar 

  56. Wang Z, Li Z, Feng D, Zu G, Li Y, Zhao Y, et al. Autophagy induction ameliorates inflammatory responses in intestinal ischemia-reperfusion through inhibiting NLRP3 inflammasome activation. Shock. 2019;52:387–95.

    Article  CAS  PubMed  Google Scholar 

  57. Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science. 2010;329:229–32.

    Article  CAS  PubMed  Google Scholar 

  58. Jia D, Wang YY, Wang P, Huang Y, Liang DY, Wang D, et al. SVIP alleviates CCl4-induced liver fibrosis via activating autophagy and protecting hepatocytes. Cell Death Dis. 2019;10:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haspel J, Shaik RS, Ifedigbo E, Nakahira K, Dolinay T, Englert JA, et al. Characterization of macroautophagic flux in vivo using a leupeptin-based assay. Autophagy. 2011;7:629–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Petrasek J, Dolganiuc A, Csak T, Kurt-Jones EA, Szabo G. Type I interferons protect from Toll-like receptor 9-associated liver injury and regulate IL-1 receptor antagonist in mice. Gastroenterology. 2011;140:697–708.

    Article  CAS  PubMed  Google Scholar 

  61. Roh YS, Park S, Kim JW, Lim CW, Seki E, Kim B. Toll-like receptor 7-mediated type I interferon signaling prevents cholestasis- and hepatotoxin-induced liver fibrosis. Hepatology. 2014;60:237–49.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou Z, Kim JW, Qi J, Eo SK, Lim CW, Kim B. Toll-like receptor 5 signaling ameliorates liver fibrosis by inducing interferon beta-modulated IL-1 receptor antagonist in mice. Am J Pathol. 2020;190:614–29.

    Article  CAS  PubMed  Google Scholar 

  63. Niu C, Li L, Daffis S, Lucifora J, Bonnin M, Maadadi S, et al. Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism. J Hepatol. 2018;68:922–31.

    Article  CAS  PubMed  Google Scholar 

  64. Wong DKH. Effect of alpha-interferon treatment in patients with hepatitis B antigen-positive chronic hepatitis B. A meta-analysis. Ann Intern Med. 1993;119:312–23.

    Article  CAS  PubMed  Google Scholar 

  65. Fink K, Martin L, Mukawera E, Chartier S, De Deken X, Brochiero E, et al. IFNbeta/TNFalpha synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH oxidase-mediated airway antiviral response. Cell Res. 2013;23:673–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, et al. IFN-alpha inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Investig. 2012;122:529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu X, Zhu ST, You H, Cong M, Liu TH, Wang BE, et al. Hepatitis B virus infects hepatic stellate cells and affects their proliferation and expression of collagen type I. Chin Med J. 2009;122:1455–61.

    CAS  PubMed  Google Scholar 

  68. Kubes P, Mehal WZ. Sterile Inflammation in the Liver. Gastroenterology. 2012;143:1158–72.

    Article  CAS  PubMed  Google Scholar 

  69. Song K, Kwon H, Han C, Chen W, Zhang J, Ma W, et al. Yes-associated protein in kupffer cells enhances the production of proinflammatory cytokines and promotes the development of nonalcoholic steatohepatitis. Hepatology. 2020;72:72–87.

    Article  CAS  PubMed  Google Scholar 

  70. Huang LR, Gäbel YA, Graf S, Arzberger S, Kurts C, Heikenwalder M, et al. Transfer of HBV genomes using low doses of adenovirus vectors leads to persistent infection in immune competent mice. Gastroenterology. 2012;142:1447–50.

    Article  CAS  PubMed  Google Scholar 

  71. Qi Z, Li G, Hu H, Yang C, Zhang X, Leng Q, et al. Recombinant covalently closed circular hepatitis B virus DNA induces prolonged viral persistence in immunocompetent mice. J Virol. 2014;88:8045–56.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yu X, Lan P, Hou X, Han Q, Lu N, Li T, et al. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1beta production via suppressing the NF-kappaB pathway and ROS production. J Hepatol. 2017;66:693–702.

    Article  CAS  PubMed  Google Scholar 

  73. Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol. 2002;76:4580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu M, Wang C, Shi B, Fang Z, Qin B, Zhou X, et al. A novel recombinant cccDNA-based mouse model with long term maintenance of rcccDNA and antigenemia. Antivir Res. 2020;180:104826.

    Article  CAS  PubMed  Google Scholar 

  75. Liu Q, Muruve DA. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther. 2003;10:935–40.

    Article  CAS  PubMed  Google Scholar 

  76. McGuire KA, Barlan AU, Griffin TM, Wiethoff CM. Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species. J Virol. 2011;85:10806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Muruve DA, Barnes MJ, Stillman IE, Libermann TA. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther. 1999;10:965–76.

    Article  CAS  PubMed  Google Scholar 

  78. Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F, Zuber S, et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell. 2017;171:1110–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo X, Li H, Ma L, Zhou J, Guo X, Woo SL, et al. Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice. Gastroenterology. 2018;155:1971–84.

    Article  CAS  PubMed  Google Scholar 

  80. Rockey DC. Liver fibrosis reversion after suppression of hepatitis B virus. Clin Liver Dis. 2016;20:667–79.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yi G, Wen Y, Shu C, Han Q, Konan KV, Li P, et al. Hepatitis C virus NS4B can suppress STING accumulation to evade innate immune responses. J Virol. 2016;90:254–65.

    Article  CAS  PubMed  Google Scholar 

  82. Tanabe J, Izawa A, Takemi N, Miyauchi Y, Torii Y, Tsuchiyama H, et al. Interferon-beta reduces the mouse liver fibrosis induced by repeated administration of concanavalin A via the direct and indirect effects. Immunology. 2007;122:562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xiao Y, Liu F, Yang J, Zhong M, Zhang E, Li Y, et al. Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice. Cell Mol Immunol. 2015;12:729–42.

    Article  CAS  PubMed  Google Scholar 

  84. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19:349–64.

    Article  CAS  PubMed  Google Scholar 

  85. Kegel V, Daniela D, Pfeiffer E, Zeilinger K, Seehofer D, Damm G, et al. Protocol for isolation of primary human hepatocytes and corresponding major populations of non-parenchymal liver cells. J Vis Exp. 2016: e53069.

  86. Zhong L, Shu W, Dai W, Gao B, Xiong S. Reactive oxygen species-mediated c-Jun NH2-terminal kinase activation contributes to hepatitis B virus X protein-induced autophagy via regulation of the Beclin-1/Bcl-2 interaction. J. Virol. 2017;91:e00001-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967;26:365–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (C31872731, C32070910, C31470839) and Zhengyi Scholar Foundation of School of Basic Medical Sciences, Fudan University (S25-01).

Author information

Authors and Affiliations

Authors

Contributions

BG and JBC conceived and supervised the study. BG, JBC, YQL, MJH, and ZYW participated in the study design and analyzed the data. YQL, MJH, ZYW, ZYD, ZWG ZTW, RJG, and THC performed the experiments. BG, YQL, and MJH wrote the manuscript.

Corresponding authors

Correspondence to Jiabin Cai or Bo Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., He, M., Wang, Z. et al. STING signaling activation inhibits HBV replication and attenuates the severity of liver injury and HBV-induced fibrosis. Cell Mol Immunol 19, 92–107 (2022). https://doi.org/10.1038/s41423-021-00801-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-021-00801-w

Keywords

This article is cited by

Search

Quick links