Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms

Abstract

Gene engineering and combinatorial approaches with other cancer immunotherapy agents may confer capabilities enabling full tumor rejection by adoptive T cell therapy (ACT). The provision of proper costimulatory receptor activity and cytokine stimuli, along with the repression of inhibitory mechanisms, will conceivably make the most of these treatment strategies. In this sense, T cells can be genetically manipulated to become refractory to suppressive mechanisms and exhaustion, last longer and differentiate into memory T cells while endowed with the ability to traffic to malignant tissues. Their antitumor effects can be dramatically augmented with permanent or transient gene transfer maneuvers to express or delete/repress genes. A combination of such interventions seeks the creation of the ultimate bionic T cell, perfected to seek and destroy cancer cells upon systemic or local intratumor delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shimasaki, N., Jain, A. & Campana D. NK cells for cancer immunotherapy. Nat. Rev. Drug. Discov. https://doi.org/10.1038/s41573-019-0052-1 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. New Engl. J. Med 382, 545–553 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andersen, R. et al. Long-Lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated il2 regimen. Clin. Cancer Res 22, 3734–3745 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. C. A. R. T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Pardoll, D. M. Building the bionic T cell. Nat. Med. 13, 1411–1413 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Roberts, E. W. et al. Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell. 30, 324–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simoni, Y. et al. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zarour, H. M. Reversing T-cell dysfunction and exhaustion in cancer. Clin. Cancer Res. 22, 1856–1864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chauvin, J.-M. et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Invest 125, 2046–2058 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li, X.-Y. et al. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J. Clin. Invest 128, 2613–2625 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wherry, E. J. T cell exhaustion. Nat. Immunol.12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Joshi, N. S. & Kaech, S. M. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180, 1309–1315 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev. Immunol. 31, 137–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Perez-Diez, A. et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109, 5346–5354 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Ahrends, T. et al. CD4+ T cell help confers a cytotoxic T cell effector program including coinhibitory receptor downregulation and increased tissue invasiveness. Immunity 47, 848–861.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl. J. Med 358, 2698–2703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Purwar, R. et al. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat. Med. 18, 1248–1253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, Y. et al. Th9 cells represent a unique subset of CD4(+) T cells endowed with the ability to eradicate advanced tumors. Cancer Cell. 33, 1048–1060.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Melero, I., Rouzaut, A., Motz, G. T. & Coukos, G. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Disco. 4, 522–526 (2014).

    Article  CAS  Google Scholar 

  29. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura, K. & Smyth M. J. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol. Immunol. https://doi.org/10.1038/s41423-019-0306-1 (2019).

    Article  CAS  Google Scholar 

  32. Busse, D. et al. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl Acad. Sci. USA 107, 3058–3063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paluskievicz, C. M. et al. T regulatory cells and priming the suppressive tumor microenvironment. Front Immunol. 10, 1–15 (2019).

    Article  CAS  Google Scholar 

  34. Dudley, M. E. et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 26, 5233–5239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosenberg, S. A. et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med 319, 1676–1680 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, S. & Margolin, K. Tumor-infiltrating lymphocytes in melanoma. Curr. Oncol. Rep. 14, 468–474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rohaan, M. W., van den Berg, J. H., Kvistborg, P. & Haanen, J. B. A. G. Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option. J. Immunother. Cancer 6, 102 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yee, C. The use of endogenous T cells for adoptive transfer. Immunol. Rev. 257, 250–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259(2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ye, Q. et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin. Cancer Res. 20, 44–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fernandez-Poma, S. M. et al. Expansion of tumor-infiltrating CD8+ T cells expressing PD-1 improves the efficacy of adoptive T cell therapy. Cancer Res. http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-17-0236 (2017)

  43. Kelderman, S. et al. Antigen-specific TIL therapy for melanoma: a flexible platform for personalized cancer immunotherapy. Eur. J. Immunol. 46, 1351–1360 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, S. et al. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol. Immunother. 62, 727–736, (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Chacon, J. A. et al. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS ONE 8, e60031–e60031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hervas-Stubbs, S. et al. CD8 T cell priming in the presence of IFN-α renders CTLs with improved responsiveness to homeostatic cytokines and recall antigens: important traits for adoptive T cell therapy. J. Immunol. 189, 3299–3310 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arenas-Ramirez, N., Woytschak, J. & Boyman, O. Interleukin-2: biology, design and application. Trends Immunol. 36, 763–777 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jazaeri, A. A. et al. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma. J. Clin. Oncol. 37, 2538 (2019).

    Article  Google Scholar 

  53. Radvanyi, L. G. Tumor-infiltrating lymphocyte therapy: addressing prevailing questions. Cancer J. 21, 450–464 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Chandran, S. S. et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 18, 792–802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Solinas, C., Carbognin, L., De Silva, P., Criscitiello, C. & Lambertini, M. Tumor-infiltrating lymphocytes in breast cancer according to tumor subtype: current state of the art. Breast 35, 142–150 (2017).

    Article  PubMed  Google Scholar 

  56. Pedersen, M. et al. Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot study. Oncoimmunology 7, e1502905–e1502905 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chandran, S. S. & Klebanoff, C. A. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol. Rev. 290, 127–147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can eradiate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Simpson, A. J. G., Caballero, O. L., Jungbluth, A., Chen, Y.-T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lu, Y.-C. et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J. Clin. Oncol. 35, 3322–3329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cameron, B. J. et al. Identification of a titin-derived HLA-A1–presented peptide as a cross-reactive target for engineered MAGE A3–directed T cells. Sci. Transl. Med. 5, 197ra103 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jin, B. Y. et al. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI insight 3, e99488 (2018).

    Article  PubMed Central  Google Scholar 

  66. Wang, Q. J. et al. Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol. Res. 4, 204–214(2016).

    Article  CAS  PubMed  Google Scholar 

  67. Malekzadeh, P. et al. Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-1874 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  68. Veatch, J. R. et al. Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma. J. Clin. Invest. 128, 1563–1568 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Olivera, I., Etxeberria, I., Bolaños, E., Gato-Cañas, M., Melero I. Exploiting TCR recognition of shared hot-spot oncogene-encoded neoantigens. Clin. Cancer Res. 26, 1203–1204 (2020).

    Article  PubMed  Google Scholar 

  71. Guedan, S., Calderon, H., Posey, A. D. & Maus, M. V. Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 12, 145–156 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 1, 20–28 (2018).

    Article  CAS  Google Scholar 

  74. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schmidts, A., Maus, M. V. & Making, C. A. R. T cells a solid option for solid tumors. Front Immunol. 9, 2593 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Spear, T. T., Nagato, K. & Nishimura, M. I. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol. Immunother. 65, 631–649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ren, Y.-B., Sun, S.-J. & Han, S.-Y. Safety strategies of genetically engineered T cells in cancer immunotherapy. Curr. Pharm. Des. 24, 78–83 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jackson, S. R., Yuan, J. & Teague, R. M. Targeting CD8+ T-cell tolerance for cancer immunotherapy. Immunother. 6, 833–852 (2014).

    Article  CAS  Google Scholar 

  79. Aleksic, M. et al. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur. J. Immunol. 42, 3174–3179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parkhurst, M. R. et al. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin. Cancer Res. 15, 169–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, Y. et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat. Biotechnol. 23, 349–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Palmer, D. C. et al. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J. Exp. Med. 212, 1–19 (2015).

    Article  CAS  Google Scholar 

  84. Stromnes, I. M. et al. Abrogation of SRC homology region 2 domain-containing phosphatase 1 in tumor-specific T cells improves efficacy of adoptive immunotherapy by enhancing the effector function and accumulation of short-lived effector T cells in vivo. J. Immunol. 189, 1812–1825 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Riese, M. J. et al. Enhanced effector responses in activated CD8+ T cells deficient in diacylglycerol kinases. Cancer Res. 73, 3566–3577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brownlie, R. J., Wright, D., Zamoyska, R. & Salmond, R. J. Deletion of PTPN22 improves effector and memory CD8+ T cell responses to tumors. JCI Insight 4, e127847 (2019).

  87. Thaker, Y. R., Raab, M., Strebhardt, K. & Rudd, C. E. GTPase-activating protein Rasal1 associates with ZAP-70 of the TCR and negatively regulates T-cell tumor immunity. Nat. Commun. 10, 1–13 (2019).

    Article  CAS  Google Scholar 

  88. LaFleur, M. W. et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10, 1–10 (2019).

    Article  CAS  Google Scholar 

  89. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ramishetti S. & Peer D. Engineering lymphocytes with RNAi. Adv. Drug Deliv. Rev. 141, 55–66 (2019).

  93. Tang, R., Langdon, W. Y. & Zhang, J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol. 340, 103878 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Hinterleitner, R. et al. Adoptive transfer of siRNA Cblb-silenced CD8+ T lymphocytes augments tumor vaccine efficacy in a B16 melanoma model. PLoS ONE 7, 1–9 (2012).

    Article  CAS  Google Scholar 

  95. Ramakrishna, S. et al. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin. Cancer Res. 25, 5329–5341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Weinkove, R., George, P., Dasyam, N. & McLellan, A. D. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin. Transl. Immunol. 8, e1049–e1049 (2019).

    Article  Google Scholar 

  98. Chen, P.-L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Disco. 6, 827–837 (2016).

    Article  CAS  Google Scholar 

  99. Peng, W. et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res. 72, 5209–5218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mahvi, D. A. et al. Ctla-4 blockade plus adoptive T-cell transfer promotes optimal melanoma immunity in mice. J. Immunother. 38, 54–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shi, L. Z. et al. Blockade of CTLA-4 and PD-1 enhances adoptive t-cell therapy efficacy in an ICOS-mediated manner. Cancer Immunol. Res. 7, 1803–1812 (2019).

    Article  PubMed  CAS  Google Scholar 

  102. Weigelin, B. et al. Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc. Natl Acad. Sci. USA 112, 7551–7556 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kjaergaard, J. et al. Augmentation versus inhibition: effects of conjunctional OX-40 receptor monoclonal antibody and IL-2 treatment on adoptive immunotherapy of advanced tumor. J. Immunol. 167, 6669–6677 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Imai, N. et al. Glucocorticoid-induced tumor necrosis factor receptor stimulation enhances the multifunctionality of adoptively transferred tumor antigen-specific CD8+ T cells with tumor regression. Cancer Sci. 100, 1317–1325 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, C. et al. Agonistic antibody to CD40 boosts the antitumor activity of adoptively transferred T cells in vivo. J. Immunother. 35, 276–282 (2012).

    Article  PubMed  CAS  Google Scholar 

  106. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Choi, B. D. et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J. Immunother. Cancer 7, 304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Stadtmauer, E. A., et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

  109. Stephan, M. T. et al. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med. 13, 1440–1449 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Abbas, A. K., Trotta, E., R Simeonov, D., Marson, A., Bluestone J. A. Revisiting IL-2: biology and therapeutic prospects. Sci Immunol. 3, eaat1482 (2018).

    Article  PubMed  Google Scholar 

  111. Berraondo, P.,et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer https://www.nature.com/articles/s41416-018-0328-y (2018).

  112. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shum, T. et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T Cells. Cancer Disco. 7, 1238–1247 (2017).

    Article  CAS  Google Scholar 

  114. Leonard, J. P. et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90, 2541–2548 (1997).

    CAS  PubMed  Google Scholar 

  115. Kerkar, S. P. et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J. Clin. Invest. 121, 4746–4757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, L. et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 21, 2278–2288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, L. et al. Enhanced efficacy and limited systemic cytokine exposure with membrane-anchored interleukin-12 T-cell therapy in murine tumor models. J. Immunother. 8, 1–12 (2020).

    Google Scholar 

  118. Kunert, A. et al. Intra-tumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors. Oncoimmunology 7, e1378842–e1378842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, Y. et al. Armored inducible expression of IL-12 enhances antitumor activity of glypican-3-targeted chimeric antigen receptor-engineered T cells in hepatocellular carcinoma. J. Immunol. 203, 198–207 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hu, B. et al. CAR T cells secreting IL18 augment antitumor immunity and increase T cell proliferation and costimulation 2. Cell Rep. 20, 3025–3033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ma, X., et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0398-2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Etxeberria, I. et al. Intratumor adoptive transfer of IL-12 mRNA transiently engineered antitumor CD8+ T Cells. Cancer Cell 36, 613–629.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Leen, A. M. et al. Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol. Ther. 22, 1211–1220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sukumaran, S. et al. Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Disco. 8, 972–987 (2018).

    Article  CAS  Google Scholar 

  126. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tang, N. et al. TGFβ inhibition via CRISPR promotes the long-term efficacy of CAR-T cells against solid tumors. JCI insight 5, e133977 (2020).

  128. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat. Immunol. 6, 600–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Li, M. O. & Flavell, R. A. TGF-beta: a master of all T cell trades. Cell 134, 392–404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Crompton, J. G., Sukumar, M. & Restifo, N. P. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy. Immunol. Rev. 257, 264–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gautam, S. et al. The transcription factor c-Myb regulates CD8 + T cell stemness and antitumor immunity. Nat. Immunol. 20, 337–349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. LaFleur, M. W. et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428, (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Teijeira, A. et al. Metabolic consequences of T-cell costimulation in anticancer immunity. Cancer Immunol. Res. 7, 1564–1569 (2019).

    Article  PubMed  Google Scholar 

  140. Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Palazon, A. et al. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32, 669–683.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang, Y. et al. Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dumauthioz, N. et al. Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cell Mol. Immunol. https://doi.org/10.1038/s41423-020-0365-3 (2020)

  145. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Teijeira, A. et al. Mitochondrial morphological and functional reprogramming following CD137 (4-1BB) costimulation. Cancer Immunol. Res. 6, 798–811 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zah, E., Lin, M.-Y., Silva-Benedict, A., Jensen, M. C. & Chen, Y. Y. T. Cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol. Res. 4, 498–508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kuhn, N. F. et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35, 473–488.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sánchez-Paulete, A. R. et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol. 28, xii44–xii55 (2017).

    Article  PubMed  Google Scholar 

  152. Peng, W. et al. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin. Cancer Res. 16, 5458–5468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. New Engl. J. Med. 375, 2561–2569 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Fernando Pastor for his critical reading and suggestions for this review. We are also thankful to all members of Melero´s laboratory for their helpful notes. Managing assistance from Esther Guirado, Cibeles Pinto, and Dr. Belen Palencia are greatly appreciated. English editing by Dr. Paul W. Miller is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iñaki Etxeberria or Ignacio Melero.

Ethics declarations

Competing interests

I. Melero is a paid consultant for Bristol-Myers Squibb, Roche, AstraZeneca, Pharmamar, Alligator, Numab, F-star, Servier, and MSD and reports receiving commercial research grants from Alligator, Bristol-Myers Squibb, Roche, and Pharmamar. No potential conflict of interest were disclosed by the other authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etxeberria, I., Olivera, I., Bolaños, E. et al. Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cell Mol Immunol 17, 576–586 (2020). https://doi.org/10.1038/s41423-020-0464-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0464-1

Keywords

This article is cited by

Search

Quick links