Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

TOX: a rediscovered master molecular actor to enhance immuno-oncology interventions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Eshhar, Z., Waks, T. & Gross, G. The emergence of T-bodies/CAR T cells. Cancer J. 20, 123–126 (2014).

    Article  CAS  Google Scholar 

  2. Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  CAS  Google Scholar 

  3. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. New Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  Google Scholar 

  4. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer cell 33, 547–562 (2018).

    Article  CAS  Google Scholar 

  5. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    Article  CAS  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  7. Cogdill, A. P., Andrews, M. C. & Wargo, J. A. Hallmarks of response to immune checkpoint blockade. Br. J. cancer 117, 1–7 (2017).

    Article  Google Scholar 

  8. Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. cancer 120, 6–15 (2019).

    Article  CAS  Google Scholar 

  9. Scott A. C., et al. The role of thymocyte selection-associated HMG box protein (TOX) in CD8 T cell differentiation and dysfunction. J. Immunol. 200, 57.36 (2018)

  10. Blanc, C. et al. Targeting resident memory T cells for cancer immunotherapy. Front. Immunol. 9, 1722 (2018).

    Article  Google Scholar 

  11. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  Google Scholar 

  12. Philip, M. & Schietinger, A. Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections. Curr. Opin. Immunol. 58, 98–103 (2019).

    Article  CAS  Google Scholar 

  13. Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).

    Article  CAS  Google Scholar 

  14. O’Flaherty, E. & Kaye, J. TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics 4, 13 (2003).

    Article  Google Scholar 

  15. Yu, X. & Li, Z. TOX gene: a novel target for human cancer gene therapy. Am. J. cancer Res. 5, 3516–3524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    Article  CAS  Google Scholar 

  17. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+T cell exhaustion. Nature 571, 211–218 (2019).

    Article  CAS  Google Scholar 

  18. Kim K., et al. 2019. Single-cell transcriptome analysis revealed a role of the transcription factor TOX in promoting CD8+T-cell exhaustion in cancer. bioRxiv https://doi.org/10.1101/641316.

  19. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article  CAS  Google Scholar 

  20. Seo, H. et al. Disruption of TOX transcription factors enhances CAR T cells function in solid tumors. J. Immunol. 202, 134.3 (2019).

    Google Scholar 

  21. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  CAS  Google Scholar 

  22. Wang X., et al. 2019. TOX promotes the exhaustion of antitumor CD8+T cells by preventing PD1 degradation in hepatocellular carcinoma. J. Hepatol. In the Press.

  23. Dulmage, B. O., Akilov, O., Vu, J. R., Falo, L. D. & Geskin, L. J. Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget 10, 3104 (2019).

    Article  Google Scholar 

  24. Chen, H. C. et al. IL-7-dependent compositional changes within the γδ T cell pool in lymph nodes during ageing lead to an unbalanced anti-tumour response. EMBO Rep. 20, e47379 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain A. Vertès.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vertès, A.A. TOX: a rediscovered master molecular actor to enhance immuno-oncology interventions. Cell Mol Immunol 17, 558–560 (2020). https://doi.org/10.1038/s41423-019-0276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0276-3

Search

Quick links