Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualizing the nucleoplasmic maturation of human pre-60S ribosomal particles

Abstract

Eukaryotic ribosome assembly is a highly orchestrated process that involves over two hundred protein factors. After early assembly events on nascent rRNA in the nucleolus, pre-60S particles undergo continuous maturation steps in the nucleoplasm, and prepare for nuclear export. Here, we report eleven cryo-EM structures of the nuclear pre-60S particles isolated from human cells through epitope-tagged GNL2, at resolutions of 2.8–4.3 Å. These high-resolution snapshots provide fine details for several major structural remodeling events at a virtual temporal resolution. Two new human nuclear factors, L10K and C11orf98, were also identified. Comparative structural analyses reveal that many assembly factors act as successive place holders to control the timing of factor association/dissociation events. They display multi-phasic binding properties for different domains and generate complex binding inter-dependencies as a means to guide the rRNA maturation process towards its mature conformation. Overall, our data reveal that nuclear assembly of human pre-60S particles is generally hierarchical with short branch pathways, and a few factors display specific roles as rRNA chaperones by confining rRNA helices locally to facilitate their folding, such as the C-terminal domain of SDAD1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of human pre-60S particles obtained through epitope-tagged GNL2.
Fig. 2: Continuous conformational maturation of the CP in GNL2-particles.
Fig. 3: The C-terminal region of SDAD1 functions in chaperoning the folding of H80.
Fig. 4: Structure and interaction of human L10K in state F.
Fig. 5: Structure of the human ITS2-associated factors.
Fig. 6: Structural dynamics and interactional changes of GNL2 in GNL2-particles.

Similar content being viewed by others

Data availability

The cryo-EM maps and atomic coordinates of the states A, B’, C’, C, D’, D, E, F’, F, G’ and G have been deposited in the EMDB and PDB databases with accession codes EMD-35672, EMD-35673, EMD-35649, EMD-35639, EMD-35651, EMD-35599, EMD-35375, EMD-35597, EMD-35371, EMD-35596, EMD-35370 and PDB 8IR1, 8IR3, 8IPX, 8IPD, 8IPY, 8INK, 8IE3, 8INF, 8IDY, 8INE, 8IDT, respectively.

References

  1. Bohnsack, K. E. & Bohnsack, M. T. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J. 38, e100278 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  2. Woolford, J. L. Jr & Baserga, S. J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643–681 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bassler, J. & Hurt, E. Eukaryotic ribosome assembly. Annu. Rev. Biochem. 88, 281–306 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Klinge, S. & Woolford, J. L. Jr Ribosome assembly coming into focus. Nat. Rev. Mol. Cell Biol. 20, 116–131 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mullineux, S. T. & Lafontaine, D. L. Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand? Biochimie 94, 1521–1532 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Henras, A. K., Plisson-Chastang, C., O'Donohue, M. F., Chakraborty, A. & Gleizes, P. E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA 6, 225–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Pena, C., Hurt, E. & Panse, V. G. Eukaryotic ribosome assembly, transport and quality control. Nat. Struct. Mol. Biol. 24, 689–699 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Kater, L. et al. Construction of the central protuberance and L1 stalk during 60S subunit biogenesis. Mol. Cell 79, 615–628.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Sanghai, Z. A. et al. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 556, 126–129 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ma, C. et al. Structural snapshot of cytoplasmic pre-60S ribosomal particles bound by Nmd3, Lsg1, Tif6 and Reh1. Nat. Struct. Mol. Biol. 24, 214–220 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kater, L. et al. Visualizing the assembly pathway of nucleolar pre-60S ribosomes. Cell 171, 1599–1610.e14 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wu, S. et al. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes. Nature 534, 133–137 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Barrio-Garcia, C. et al. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nat. Struct. Mol. Biol. 23, 37–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Cheng, J. D. et al. 90S pre-ribosome transformation into the primordial 40S subunit. Science 369, 1470–1476 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Kornprobst, M. et al. Architecture of the 90S pre-ribosome: a structural view on the birth of the eukaryotic ribosome. Cell 166, 380–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Barandun, J. et al. The complete structure of the small-subunit processome. Nat. Struct. Mol. Biol. 24, 944–953 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, Q. et al. Molecular architecture of the 90S small subunit pre-ribosome. Elife 6, e22086 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Du, Y. et al. Cryo-EM structure of 90S small ribosomal subunit precursors in transition states. Science 369, 1477–1481 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Ameismeier, M., Cheng, J., Berninghausen, O. & Beckmann, R. Visualizing late states of human 40S ribosomal subunit maturation. Nature 558, 249–253 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Liang, X. et al. Structural snapshots of human pre-60S ribosomal particles before and after nuclear export. Nat. Commun. 11, 3542 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zhou, Y., Musalgaonkar, S., Johnson, A. W. & Taylor, D. W. Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome. Nat. Commun. 10, 958 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Thoms, M. et al. Suppressor mutations in Rpf2-Rrs1 or Rpl5 bypass the Cgr1 function for pre-ribosomal 5S RNP-rotation. Nat. Commun. 9, 4094 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wilson, D. M. et al. Structural insights into assembly of the ribosomal nascent polypeptide exit tunnel. Nat. Commun. 11, 5111 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Micic, J. et al. Coupling of 5S RNP rotation with maturation of functional centers during large ribosomal subunit assembly. Nat. Commun. 11, 3751 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cruz, V. E. et al. Sequence-specific remodeling of a topologically complex RNP substrate by Spb4. Nat. Struct. Mol. Biol. 29, 1228–1238 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Prattes, M. et al. Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1. Nat. Struct. Mol. Biol. 29, 942–953 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ugolini, I. et al. Chromatin localization of nucleophosmin organizes ribosome biogenesis. Mol. Cell 82, 4443–4457.e9 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yelland, J. N., Bravo, J. P. K., Black, J. J., Taylor, D. W. & Johnson, A. W. A single 2'-O-methylation of ribosomal RNA gates assembly of a functional ribosome. Nat. Struct. Mol. Biol. 30, 91–98 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Sekulski, K., Cruz, V. E., Weirich, C. S. & Erzberger, J. P. rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly. Nat. Commun. 14, 1207 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Tafforeau, L. et al. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing factors. Mol. Cell 51, 539–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Dorner, K. et al. Genome-wide RNAi screen identifies novel players in human 60S subunit biogenesis including key enzymes of polyamine metabolism. Nucleic Acids Res. 50, 2872–2888 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Badertscher, L. et al. Genome-wide RNAi screening identifies protein modules required for 40S subunit synthesis in human cells. Cell Rep. 13, 2879–2891 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Farley-Barnes, K. I. et al. Diverse regulators of human ribosome biogenesis discovered by changes in nucleolar number. Cell Rep. 22, 1923–1934 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wild, T. et al. A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S subunit export. PLoS Biol. 8, e1000522 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ogawa, L. M. et al. Increased numbers of nucleoli in a genome-wide RNAi screen reveal proteins that link the cell cycle to RNA polymerase I transcription. Mol. Biol. Cell 32, 956–973 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ni, C. & Buszczak, M. The homeostatic regulation of ribosome biogenesis. Semin. Cell Dev. Biol. 136, 13–26 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Pelletier, J., Thomas, G. & Volarević, S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat. Rev. Cancer 18, 51–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Iadevaia, V., Liu, R. & Proud, C. G. mTORC1 signaling controls multiple steps in ribosome biogenesis. Semin. Cell Dev. Biol. 36, 113–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Y., Deisenroth, C. & Zhang, Y. RP-MDM2-p53 pathway: linking ribosomal biogenesis and tumor surveillance. Trends Cancer 2, 191–204 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  40. van Riggelen, J., Yetil, A. & Felsher, D. W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10, 301–309 (2010).

    Article  PubMed  Google Scholar 

  41. Aspesi, A. & Ellis, S. R. Rare ribosomopathies: insights into mechanisms of cancer. Nat. Rev. Cancer 19, 228–238 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Cao, P. et al. Genomic gain of RRS1 promotes hepatocellular carcinoma through reducing the RPL11-MDM2-p53 signaling. Sci. Adv. 7, eabf4304 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ebright, R. Y. et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 367, 1468–1473 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Singh, S., Vanden Broeck, A., Miller, L., Chaker-Margot, M. & Klinge, S. Nucleolar maturation of the human small subunit processome. Science 373, eabj5338 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Ameismeier, M. et al. Structural basis for the final steps of human 40S ribosome maturation. Nature 587, 683–687 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Leidig, C. et al. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat. Commun. 5, 3491 (2014).

    Article  PubMed  Google Scholar 

  48. Bassler, J. et al. The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly. Mol. Cell 38, 712–721 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ulbrich, C. et al. Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits. Cell 138, 911–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Raman, N., Weir, E. & Muller, S. The AAA ATPase MDN1 acts as a SUMO-targeted regulator in mammalian pre-ribosome remodeling. Mol. Cell 64, 607–615 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Finkbeiner, E., Haindl, M. & Muller, S. The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO J. 30, 1067–1078 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Klingauf-Nerurkar, P. et al. The GTPase Nog1 co-ordinates the assembly, maturation and quality control of distant ribosomal functional centers. Elife 9, e52474 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kressler, D., Rojo, M., Linder, P. & Cruz, J. Spb1p is a putative methyltransferase required for 60S ribosomal subunit biogenesis in Saccharomyces cerevisiae. Nucleic Acids Res. 27, 4598–4608 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Lapeyre, B. & Purushothaman, S. K. Spb1p-directed formation of Gm(2922) in the ribosome catalytic center occurs at a late processing stage. Mol. Cell 16, 663–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Krogh, N. et al. Profiling of 2'-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Res. 44, 7884–7895 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Simabuco, F. M., Morello, L. G., Aragao, A. Z., Paes Leme, A. F. & Zanchin, N. I. Proteomic characterization of the human FTSJ3 preribosomal complexes. J. Proteom. Res. 11, 3112–3126 (2012).

    Article  CAS  Google Scholar 

  57. Bassler, J. et al. The conserved Bud20 zinc finger protein is a new component of the ribosomal 60S subunit export machinery. Mol. Cell. Biol. 32, 4898–4912 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Paternoga, H. et al. Mutational analysis of the Nsa2 N-terminus reveals its essential role in ribosomal 60S subunit assembly. Int. J. Mol. Sci. 21, 9108 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Moazed, D. & Noller, H. F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57, 585–597 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Rabbani, S. A., Yasuda, T., Bennett, H. P., Hendy, G. N. & Banville, D. Nucleotide and (derived) amino acid sequence of a novel peptide from a rat (hypercalcemic) Leydig cell tumor. Biochim. Biophys. Acta 1171, 229–230 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Bertomeu, T. et al. A high-resolution genome-wide CRISPR/Cas9 viability screen reveals structural features and contextual diversity of the human cell-essential proteome. Mol. Cell. Biol. 38, e00302–e00317 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Pirouz, M., Munafo, M., Ebrahimi, A. G., Choe, J. & Gregory, R. I. Exonuclease requirements for mammalian ribosomal RNA biogenesis and surveillance. Nat. Struct. Mol. Biol. 26, 490–500 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Saveanu, C. et al. Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. EMBO J. 20, 6475–6484 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Matsuo, Y. et al. Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature 505, 112–116 (2014).

    Article  PubMed  Google Scholar 

  66. Li, Z. et al. Nuclear export of pre-60S particles through the nuclear pore complex. Nature 618, 411–418 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  69. Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  72. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  73. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  75. Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. W. Wei, X. Ji and J. Hu at Peking University for their help with CRISPR Knock-In experiments. We also thank the Core Facilities at the School of Life Sciences, Peking University for help with negative staining EM; the Cryo-EM Platform of Peking University for help with data collection; the High-performance Computing Platform of Peking University for help with computation; the National Center for Protein Sciences at Peking University for assistance with flow cytometry and mass spectrometry. The work was supported by the National Natural Science Foundation of China (32230051 to N.G., 31922036 to N.L.), the National Key R&D Program of China (2019YFA0508904 to N.G.), and the Qidong-SLS Innovation Fund to N.G.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and S.L. established the CRISPR-KI cell line. Y.Z. prepared the pre-ribosomal samples, and collected the cryo-EM data. Y.Z. and X.L. performed EM analysis (with the help of Y.L., Y.C., N.L. and C.M.). N.G., Y.Z. and X.L. performed cryo-EM model building and wrote the manuscript.

Corresponding author

Correspondence to Ning Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liang, X., Luo, S. et al. Visualizing the nucleoplasmic maturation of human pre-60S ribosomal particles. Cell Res 33, 867–878 (2023). https://doi.org/10.1038/s41422-023-00853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00853-9

Search

Quick links