Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Set7/9 aggravates ischemic brain injury via enhancing glutamine metabolism in a blocking Sirt5 manner

Abstract

The aberrant expression of methyltransferase Set7/9 plays a role in various diseases. However, the contribution of Set7/9 in ischemic stroke remains unclear. Here, we show ischemic injury results in a rapid elevation of Set7/9, which is accompanied by the downregulation of Sirt5, a deacetylase reported to protect against injury. Proteomic analysis identifies the decrease of chromobox homolog 1 (Cbx1) in knockdown Set7/9 neurons. Mechanistically, Set7/9 promotes the binding of Cbx1 to H3K9me2/3 and forms a transcription repressor complex at the Sirt5 promoter, ultimately repressing Sirt5 transcription. Thus, the deacetylation of Sirt5 substrate, glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, is decreased, promoting glutaminase expression and triggering excitotoxicity. Blocking Set7/9 eliminates H3K9me2/3 from the Sirt5 promoter and normalizes Sirt5 expression and Set7/9 knockout efficiently ameliorates brain ischemic injury by reducing the accumulation of ammonia and glutamate in a Sirt5-dependent manner. Collectively, the Set7/9-Sirt5 axis may be a promising epigenetic therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Set7/9 KO mice are protected from severe deficits after stroke.
Fig. 2: Blocking Set7/9 protects the neuron from OGD/R damage.
Fig. 3: Regulation of glutamine metabolism by Sirt5 is involved in Set7/9-mediated ischemic brain insult.
Fig. 4: Blocking Set7/9 mediated neuroprotection is largely Sirt5-dependent.
Fig. 5: Reducing Sirt5 restores susceptibility of Set7/9 KO mice.
Fig. 6: Proteomic Profiling of HT22 cells with Set7/9 knockdown.
Fig. 7: Set7/9 inhibits Sirt5 transcription through the transcriptional inhibition complex, Cbx1/Suv39h1/H3K9me2/3.
Fig. 8: Working model of Set7/9 aggravates ischemic brain injury via enhancing glutamine metabolism in a blocking Sirt5 manner.

Similar content being viewed by others

Data availability

All data in this study are provided in the paper and Supplementary Materials.

References

  1. Chamorro A, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15:869–81.

    Article  CAS  PubMed  Google Scholar 

  2. Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14:497–500.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang H, Hua X, Song J. Phenotypes of cardiovascular diseases: current status and future perspectives. Phenomics. 2021;1:229–41.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34–66.

    Article  CAS  PubMed  Google Scholar 

  5. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–88.

    Article  CAS  PubMed  Google Scholar 

  6. Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 2002;16:479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell. 2001;8:1207–17.

    Article  CAS  PubMed  Google Scholar 

  8. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, et al. Regulation of p53 activity through lysine methylation. Nature. 2004;432:353–60.

    Article  CAS  PubMed  Google Scholar 

  9. Kouskouti A, Scheer E, Staub A, Tora L, Talianidis I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell. 2004;14:175–82.

    Article  CAS  PubMed  Google Scholar 

  10. Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA, et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci USA. 2009;106:5076–81.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Du Y, Zhang P, Liu W, Tian J. Optical imaging of epigenetic modifications in cancer: a systematic review. Phenomics. 2022;2:88–101.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao J, Xu H, Su Y, Pan J, Xie S, Xu J, et al. Emerging regulatory mechanisms of N6-methyladenosine modification in cancer metastasis. Phenomics. 2023;3:83–100.

    Article  PubMed  Google Scholar 

  13. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001;410:120–4.

    Article  CAS  PubMed  Google Scholar 

  14. van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, et al. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone. 2021;143:115659.

    Article  PubMed  Google Scholar 

  15. Jiang N, Niu G, Pan YH, Pan WW, Zhang MF, Zhang CZ, et al. CBX4 transcriptionally suppresses KLF6 via interaction with HDAC1 to exert oncogenic activities in clear cell renal cell carcinoma. Ebiomedicine. 2020;53:102692.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gehrmann U, Burbage M, Zueva E, Goudot C, Esnault C, Ye M, et al. Critical role for TRIM28 and HP1beta/gamma in the epigenetic control of T cell metabolic reprograming and effector differentiation. Proc Natl Acad Sci USA. 2019;116:25839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Du JT, Zhou YY, Su XY, Yu JJ, Khan S, Jiang H, et al. Sirt5 Is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334:806–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rardin MJ, He WJ, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013;18:920–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park J, Chen Y, Tishkoff DX, Peng C, Tan MJ, Dai LZ, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013;50:919–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar S, Lombard DB. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit Rev Biochem Mol Biol. 2018;53:311–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009;137:560–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ding L, Xu X, Li C, Wang Y, Xia X, Zheng JC. Glutaminase in microglia: a novel regulator of neuroinflammation. Brain Behav Immun. 2021;92:139–56.

    Article  CAS  PubMed  Google Scholar 

  23. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morris-Blanco KC, Dave KR, Saul I, Koronowski KB, Stradecki HM, Perez-Pinzon MA. Protein kinase C epsilon promotes cerebral ischemic tolerance via modulation of mitochondrial Sirt5. Sci Rep-Uk. 2016;6:29790.

    Article  CAS  Google Scholar 

  25. Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol. 2015;88:73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang JH, Xu J, Dong YJ, Su ZH, Su HB, Cheng QW, et al. ADP-ribose transferase PARP16 mediated-unfolded protein response contributes to neuronal cell damage in cerebral ischemia/reperfusion. FASEB J. 2023;37:e22788.

    Article  CAS  PubMed  Google Scholar 

  27. Aledo JC, de Pedro E, Gomez-Fabre PM, Nunez de Castro I, Marquez J. Submitochondrial localization and membrane topography of Ehrlich ascitic tumour cell glutaminase. Biochim Biophys Acta. 1997;1323:173–84.

    Article  CAS  PubMed  Google Scholar 

  28. Rama Rao KV, Norenberg MD. Glutamine in the pathogenesis of hepatic encephalopathy: the trojan horse hypothesis revisited. Neurochem Res. 2014;39:593–8.

    Article  CAS  PubMed  Google Scholar 

  29. Rama Rao KV, Jayakumar AR, Norenberg MD. Glutamine in the pathogenesis of acute hepatic encephalopathy. Neurochem Int. 2012;61:575–80.

    Article  CAS  PubMed  Google Scholar 

  30. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37.

    Article  CAS  PubMed  Google Scholar 

  31. Pradhan S, Chin HG, Esteve PO, Jacobsen SE. SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics. 2009;4:383–7.

    Article  CAS  PubMed  Google Scholar 

  32. Maganti AV, Maier B, Tersey SA, Sampley ML, Mosley AL, Ozcan S, et al. Transcriptional activity of the islet beta cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem. 2015;290:9812–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oudhoff MJ, Braam MJS, Freeman SA, Wong D, Rattray DG, Wang J, et al. SETD7 controls intestinal regeneration and tumorigenesis by regulating wnt/beta-catenin and hippo/YAP signaling. Dev Cell. 2016;37:47–57.

    Article  CAS  PubMed  Google Scholar 

  34. Elkouris M, Kontaki H, Stavropoulos A, Antonoglou A, Nikolaou KC, Samiotaki M, et al. SET9-mediated regulation of TGF-beta signaling links protein methylation to pulmonary fibrosis. Cell Rep. 2016;15:2733–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sasaki K, Doi S, Nakashima A, Irifuku T, Yamada K, Kokoroishi K, et al. Inhibition of SET domain-containing lysine methyltransferase 7/9 ameliorates renal fibrosis. J Am Soc Nephrol. 2016;27:203–15.

    Article  CAS  PubMed  Google Scholar 

  36. Campaner S, Spreafico F, Burgold T, Doni M, Rosato U, Amati B, et al. The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol Cell. 2011;43:681–8.

    Article  CAS  PubMed  Google Scholar 

  37. Tan MJ, Peng C, Anderson KA, Chhoy P, Xie ZY, Dai LZ, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014;19:605–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wagner GR, Bhatt DP, O’Connell TM, Thompson JW, Dubois LG, Backos DS, et al. A class of reactive Acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 2017;25:823–837.e828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm. 2014;121:799–817.

    Article  CAS  PubMed  Google Scholar 

  40. Budgett RF, Bakker G, Sergeev E, Bennett KA, Bradley SJ. Targeting the Type 5 metabotropic glutamate receptor: a potential therapeutic strategy for neurodegenerative diseases? Front Pharmacol. 2022;13:893422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ribeiro FM, Vieira LB, Pires RGW, Olmo RP, Ferguson SSG. Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res. 2017;115:179–91.

    Article  CAS  PubMed  Google Scholar 

  42. Yu YL, Newman H, Shen LY, Sharma D, Hu GL, Mirando AJ, et al. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 2019;29:966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sadhukhan S, Lin HN. Metabolomics-assisted proteomics identifies protein lysine succinylation and SIRT5 as important regulators of cardiac metabolism and function. Abstr Pap Am Chem Soc. 2016;113:4320–5.

  44. Greene KS, Lukey MJ, Wang X, Blank B, Druso JE, Lin MJ, et al. SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc Natl Acad Sci USA. 2019;116:26625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He M, Yue L, Wang H, Yu F, Yu M, Ni P, et al. Evaluation of the prognostic value of CBXs in gastric cancer patients. Sci Rep. 2021;11:12375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Casale AM, Cappucci U, Fanti L, Piacentini L. Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Sci Rep. 2019;9::4372.

    Article  PubMed  Google Scholar 

  47. Canzio D, Chang EY, Shankar S, Kuchenbecker KM, Simon MD, Madhani HD, et al. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol Cell. 2011;41:67–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448:553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Carroll D, Scherthan H, Peters AHFM, Opravil S, Haynes AR, Laible G, et al. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol. 2000;20:9423–33.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. Embo J. 1999;18:1923–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maeda R, Tachibana M. HP1 maintains protein stability of H3K9 methyltransferases and demethylases. EMBO Rep. 2022;23:e53581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The working model of this study was drawn using Biorender (www.biorender.com).

Funding

This work was supported by the Science and Technology Commission of Shanghai Municipality (22S11902700, 21S11907400), Shanghai Municipal Science and Technology Major Project (2023SHZDZX02), National Natural Science Foundation of China (82204386). National Key R&D Program of China (2020YFE0201600), Program of Shanghai Academic/Technology Research Leader (22XD1420100).

Author information

Authors and Affiliations

Authors

Contributions

WJH, ZYY, and TSB designed and performed the experiments, analyzed the data, and wrote the manuscript. XJ, LYH, CQW contributed to the manuscript. LXH, CJ, and DC designed the experiments, supervised the study, and revised the manuscript.

Corresponding authors

Correspondence to Chen Ding, Xinhua Liu or Jun Chang.

Ethics declarations

Competing interests

The authors declare no competing interests

Ethics declarations

All animals and the experimental protocol conformed to the Animal Welfare Act Guide for Use and Care of Laboratory Animals, and were approved by Institutional Animal Care and Use Committee (IACUC), Fudan University, China.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Tan, S., Zhang, Y. et al. Set7/9 aggravates ischemic brain injury via enhancing glutamine metabolism in a blocking Sirt5 manner. Cell Death Differ 31, 511–523 (2024). https://doi.org/10.1038/s41418-024-01264-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-024-01264-y

Search

Quick links