Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DDHD2, whose mutations cause spastic paraplegia type 54, enhances lipophagy via engaging ATG8 family proteins

Abstract

Hereditary spastic paraplegia (HSP) is a group of inherited neurodegenerative disorders characterized by progressive lower limb spasticity and weakness. One subtype of HSP, known as SPG54, is caused by biallelic mutations in the DDHD2 gene. The primary pathological feature observed in patients with SPG54 is the massive accumulation of lipid droplets (LDs) in the brain. However, the precise mechanisms and roles of DDHD2 in regulating lipid homeostasis are not yet fully understood. Through Affinity Purification-Mass Spectroscopy (AP-MS) analysis, we identify that DDHD2 interacts with multiple members of the ATG8 family proteins (LC3, GABARAPs), which play crucial roles in lipophagy. Mutational analysis reveals the presence of two authentic LIR motifs in DDHD2 protein that are essential for its binding to LC3/GABARAPs. We show that DDHD2 deficiency leads to LD accumulation, while enhanced DDHD2 expression reduces LD formation. The LC3/GABARAP-binding capacity of DDHD2 and the canonical autophagy pathway both contribute to its LD-eliminating activity. Moreover, DDHD2 enhances the colocalization between LC3B and LDs to promote lipophagy. LD·ATTEC, a small molecule that tethers LC3 to LDs to enhance their autophagic clearance, effectively counteracts DDHD2 deficiency-induced LD accumulation. These findings provide valuable insights into the regulatory roles of DDHD2 in LD catabolism and offer a potential therapeutic approach for treating SPG54 patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DDHD1 and DDHD2 interact with LC3/GABARAPs in cells.
Fig. 2: Identification of two LIR motifs in DDHD2 required for its interaction with LC3/GABARAPs.
Fig. 3: The LC3/GABARAP-binding capacity contributes to DDHD2’s ability to eliminate LDs.
Fig. 4: DDHD2 enhances the colocalization of LC3B and LDs.
Fig. 5: DDHD2 KO decreases lipophagy.
Fig. 6: LD·ATTEC reverses DDHD2 deficiency-caused LD accumulation.
Fig. 7: Schematic diagram illustrating that DDHD2 enhances lipophagy via engaging ATG8 family proteins.

Similar content being viewed by others

References

  1. Shribman S, Reid E, Crosby AH, Houlden H, Warner TT. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol. 2019;18:1136–46.

    Article  CAS  PubMed  Google Scholar 

  2. Fink JK. Advances in the hereditary spastic paraplegias. Exp Neurol. 2003;184:S106–10.

    Article  CAS  PubMed  Google Scholar 

  3. Panza E, Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol. 2022;357:114203.

    Article  CAS  PubMed  Google Scholar 

  4. Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: an update. Int J Mol Sci. 2022;23:1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into clinical, genetic, and pathological aspects of hereditary spastic paraplegias: a comprehensive overview. Front Mol Biosci. 2021;8:690899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blackstone C. Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci. 2012;35:25–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schuurs-Hoeijmakers JH, Geraghty MT, Kamsteeg EJ, Ben-Salem S, de Bot ST, Nijhof B, et al. Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet. 2012;91:1073–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chou YT, Hsu SL, Tsai YS, Lu YJ, Yu KW, Wu HM, et al. Biallelic DDHD2 mutations in patients with adult-onset complex hereditary spastic paraplegia. Ann Clin Transl Neurol. 2023;10:1603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yaginuma S, Kawana H, Aoki J. Current knowledge on mammalian phospholipase A(1), brief history, structures, biochemical and pathophysiological roles. Molecules. 2022;27:2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Tienhoven M, Atkins J, Li Y, Glynn P. Human neuropathy target esterase catalyzes hydrolysis of membrane lipids. J Biol Chem. 2002;277:20942–8.

    Article  PubMed  Google Scholar 

  11. Inloes JM, Kiosses WB, Wang H, Walther TC, Farese RV Jr, Cravatt BF. Functional contribution of the spastic paraplegia-related triglyceride hydrolase DDHD2 to the formation and content of lipid droplets. Biochemistry. 2018;57:827–38.

    Article  CAS  PubMed  Google Scholar 

  12. Inloes JM, Hsu KL, Dix MM, Viader A, Masuda K, Takei T, et al. The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc Natl Acad Sci USA. 2014;111:14924–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20:137–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Unger RH. Lipotoxic diseases. Annu Rev Med. 2002;53:319–36.

    Article  CAS  PubMed  Google Scholar 

  15. Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, et al. The menage a trois of autophagy, lipid droplets and liver disease. Autophagy. 2022;18:50–72.

    Article  CAS  PubMed  Google Scholar 

  16. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458:1131–5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Pu M, Zheng W, Zhang H, Wan W, Peng C, Chen X, et al. ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover. Protein Cell. 2023;14:653–67.

    PubMed  Google Scholar 

  18. Chung J, Park J, Lai ZW, Lambert TJ, Richards RC, Zhang J, et al. The Troyer syndrome protein spartin mediates selective autophagy of lipid droplets. Nat Cell Biol. 2023;25:1101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robichaud S, Fairman G, Vijithakumar V, Mak E, Cook DP, Pelletier AR, et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy. 2021;17:3671–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haidar M, Loix M, Bogie JFJ, Hendriks JJA. Lipophagy: a new player in CNS disorders. Trends Endocrinol Metab. 2021;32:941–51.

    Article  CAS  PubMed  Google Scholar 

  21. Tu YXI, Sydor AM, Coyaud E, Laurent EMN, Dyer D, Mellouk N, et al. Global proximity interactome of the human macroautophagy pathway. Autophagy. 2022;18:1174–86.

    Article  CAS  PubMed  Google Scholar 

  22. Fan S, Yue L, Wan W, Zhang Y, Zhang B, Otomo C, et al. Inhibition of autophagy by a small molecule through covalent modification of the LC3 protein. Angew Chem Int Ed Engl. 2021;60:26105–14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hofer P, Grabner GF, Konig M, Xie H, Bulfon D, Ludwig AE, et al. Cooperative lipolytic control of neuronal triacylglycerol by spastic paraplegia-associated enzyme DDHD2 and ATGL. J Lipid Res. 2023;64:100457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu Y, Chen N, Wang Z, Luo S, Ding Y, Lu B. Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res. 2021;31:965–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Huang J, Liang Y, Huang J, Fu Y, Chen N, et al. Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE. Autophagy. 2023;19:2668–81.

    Article  CAS  PubMed  Google Scholar 

  26. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176:11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flores-Leon M, Outeiro TF. More than meets the eye in Parkinson’s disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathol. 2023;146:369–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol. 2017;18:671–84.

    Article  CAS  PubMed  Google Scholar 

  29. Sathyanarayan A, Mashek MT, Mashek DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep. 2017;19:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tadepalle N, Rugarli EI. Lipid droplets in the pathogenesis of hereditary spastic paraplegia. Front Mol Biosci. 2021;8:673977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov. 2021;20:362–83.

    Article  CAS  PubMed  Google Scholar 

  32. Atkinson AJ Jr. Intracerebroventricular drug administration. Transl Clin Pharmacol. 2017;25:117–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The graphical model image was generated by BioRender.com. We thank Prof. Cheng Luo (Shanghai Institute of Materia Medica) for kindly providing DC-LC3in-D5 compound. Prof. Wei Liu (Zhejiang University) for kindly providing GFP-mCherry-livedrop constructs.

Funding

This work was in part supported by the National Natural Science Foundation of China (No. 92357301, 32370726, 91957125, 81972396 to C.W. 31821002, 31930062 to S.Z., 92049301, 82050008 to B.L., 31970748 to Y.F), the State Key Development Programs of China (No. 2022YFA1104200 to C.W.; 2018YFA0800300 to S.Z), the Natural Science Foundation of Shanghai (No. 22ZR1406600 to C.W), Science and Technology Research Program of Shanghai (No. 9DZ2282100). Science and Technology Commission of Shanghai Municipality (22S11900100 to Y.F).

Author information

Authors and Affiliations

Authors

Contributions

C.W. conceived the study. F.J. and X.W. performed the experiments and data analyses. C.W., B.L., S.Z. and Y.F. analyzed and interpreted the data. B.L. provided LD·ATTEC compound. C.W. wrote the manuscript.

Corresponding authors

Correspondence to Shi-Min Zhao, Boxun Lu or Chenji Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, F., Wang, X., Fu, Y. et al. DDHD2, whose mutations cause spastic paraplegia type 54, enhances lipophagy via engaging ATG8 family proteins. Cell Death Differ 31, 348–359 (2024). https://doi.org/10.1038/s41418-024-01261-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-024-01261-1

Search

Quick links