Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The bone–liver interaction modulates immune and hematopoietic function through Pinch-Cxcl12-Mbl2 pathway

Abstract

Mesenchymal stromal cells (MSCs) are used to treat infectious and immune diseases and disorders; however, its mechanism(s) remain incompletely defined. Here we find that bone marrow stromal cells (BMSCs) lacking Pinch1/2 proteins display dramatically reduced ability to suppress lipopolysaccharide (LPS)-induced acute lung injury and dextran sulfate sodium (DSS)-induced inflammatory bowel disease in mice. Prx1-Cre; Pinch1f/f; Pinch2−/− transgenic mice have severe defects in both immune and hematopoietic functions, resulting in premature death, which can be restored by intravenous injection of wild-type BMSCs. Single cell sequencing analyses reveal dramatic alterations in subpopulations of the BMSCs in Pinch mutant mice. Pinch loss in Prx1+ cells blocks differentiation and maturation of hematopoietic cells in the bone marrow and increases production of pro-inflammatory cytokines TNF-α and IL-1β in monocytes. We find that Pinch is critical for expression of Cxcl12 in BMSCs; reduced production of Cxcl12 protein from Pinch-deficient BMSCs reduces expression of the Mbl2 complement in hepatocytes, thus impairing the innate immunity and thereby contributing to infection and death. Administration of recombinant Mbl2 protein restores the lethality induced by Pinch loss in mice. Collectively, we demonstrate that the novel Pinch-Cxcl12-Mbl2 signaling pathway promotes the interactions between bone and liver to modulate immunity and hematopoiesis and may provide a useful therapeutic target for immune and infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pinch1Prx1; Pinch2-/- (dKO) mice display abnormal appearance, cell population structure and gene expression patterns.
Fig. 2: Pinch loss dramatically altered hematopoietic progenitors and linages.
Fig. 3: Pinch loss significantly stimulates inflammatory response related genes in monocytes.
Fig. 4: Intravenous injection of BMSCs ameliorates immune and hematopoietic function of dKO mice.
Fig. 5: Complement lectin pathway contributes to hematopoietic and immune-regulatory roles of Pinch1/2.
Fig. 6: Depletion of Pinch impairs the effects of BMSCs in treatment of acute lung injury induced by LPS.
Fig. 7: Depletion of Pinch impairs the effects of BMSCs in treatment of DSS-induced experimental colitis in mice.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Extended Data files or from the corresponding authors upon reasonable request. Source data are provided with this paper. ScRNA-seq data have been deposited in Gene Expression Omnibus under accession No. GSE152217 and LC–MS/MS data have been deposited in PRIDE Archive under accession No. PXD043019.

References

  1. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–78.

    Article  CAS  PubMed  Google Scholar 

  2. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article  CAS  PubMed  Google Scholar 

  3. Weiss ARR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;10:1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weissman IL. Developmental switches in the immune system. Cell. 1994;76:207–18.

    Article  CAS  PubMed  Google Scholar 

  5. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585.

    Article  PubMed  Google Scholar 

  6. Gotts JE, Matthay MA. Cell-based therapy in sepsis. a step closer. Am J Respir Crit Care Med. 2018;197:280–1.

    Article  CAS  PubMed  Google Scholar 

  7. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13:392–402.

    Article  CAS  PubMed  Google Scholar 

  8. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43.

    Article  PubMed  Google Scholar 

  9. Mezey É. Human mesenchymal stem/stromal cells in immune regulation and therapy. Stem Cells Transl Med. 2022;11:114–34.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burnham AJ, Daley-Bauer LP, Horwitz EM. Mesenchymal stromal cells in hematopoietic cell transplantation. Blood Adv. 2020;4:5877–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boregowda SV, Phinney DG. Therapeutic applications of mesenchymal stem cells: current outlook. BioDrugs. 2012;26:201–8.

    Article  CAS  PubMed  Google Scholar 

  12. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–49.

    Article  PubMed  Google Scholar 

  13. Liu F, Xie J, Zhang X, Wu Z, Zhang S, Xue M, et al. Overexpressing TGF-β1 in mesenchymal stem cells attenuates organ dysfunction during CLP-induced septic mice by reducing macrophage-driven inflammation. Stem Cell Res Ther. 2020;11:378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Juarez J, Bendall L, Bradstock K. Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis. Curr Pharm Des. 2004;10:1245–59.

    Article  CAS  PubMed  Google Scholar 

  15. Li M, Ransohoff RM. The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis. Semin Cancer Biol. 2009;19:111–5.

    Article  CAS  PubMed  Google Scholar 

  16. Würth R, Bajetto A, Harrison JK, Barbieri F, Florio T. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front Cell Neurosci. 2014;8:144.

    PubMed  PubMed Central  Google Scholar 

  17. Chen S, He T, Zhong Y, Chen M, Yao Q, Chen D, et al. Roles of focal adhesion proteins in skeleton and diseases. Acta Pharm Sin B. 2023;13:998–1013.

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Wu X, Lai Y, Chen D, Bai X, Liu S, et al. Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc. Bone Res. 2022;10:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu X, Lai Y, Chen S, Zhou C, Tao C, Fu X, et al. Kindlin-2 preserves integrity of the articular cartilage to protect against osteoarthritis. Nat Aging. 2022;2:332–47.

    Article  CAS  PubMed  Google Scholar 

  20. Gao H, Zhong Y, Zhou L, Lin S, Hou X, Ding Z, et al. Kindlin-2 inhibits TNF/NF-κB-Caspase 8 pathway in hepatocytes to maintain liver development and function. Elife. 2023;12:e81792.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu H, Cao H, Xiao G. Signaling via PINCH: functions, binding partners and implications in human diseases. Gene. 2016;594:10–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lei Y, Fu X, Li P, Lin S, Yan Q, Lai Y, et al. LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice. Bone Res. 2020;8:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu X, Chen M, Lin S, Chen S, Gu J, Wu Y, et al. Loss of pinch proteins causes severe degenerative disc disease-like lesions in mice. Aging Dis. 2023;14:1818–33.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gil E, Noursadeghi M, Brown JS. Streptococcus pneumoniae interactions with the complement system. Front Cell Infect Microbiol. 2022;12:929483.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eisen DP, Minchinton RM. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis. 2003;37:1496–505.

    Article  CAS  PubMed  Google Scholar 

  26. Garred P, Pressler T, Lanng S, Madsen HO, Moser C, Laursen I, et al. Mannose-binding lectin (MBL) therapy in an MBL-deficient patient with severe cystic fibrosis lung disease. Pediatr Pulmonol. 2002;33:201–7.

    Article  PubMed  Google Scholar 

  27. Jensenius JC, Jensen PH, McGuire K, Larsen JL, Thiel S. Recombinant mannan-binding lectin (MBL) for therapy. Biochem Soc Trans. 2003;31:763–7.

    Article  CAS  PubMed  Google Scholar 

  28. Stanchi F, Bordoy R, Kudlacek O, Braun A, Pfeifer A, Moser M, et al. Consequences of loss of PINCH2 expression in mice. J Cell Sci. 2005;118:5899–910.

    Article  CAS  PubMed  Google Scholar 

  29. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481:457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495:231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oertel M, Menthena A, Chen YQ, Shafritz DA. Comparison of hepatic properties and transplantation of Thy-1(+) and Thy-1(-) cells isolated from embryonic day 14 rat fetal liver. Hepatology. 2007;46:1236–45.

    Article  CAS  PubMed  Google Scholar 

  32. Zheng D, Oh SH, Jung Y, Petersen BE. Oval cell response in 2-acetylaminofluorene/partial hepatectomy rat is attenuated by short interfering RNA targeted to stromal cell-derived factor-1. Am J Pathol. 2006;169:2066–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ko S, Russell JO, Molina LM, Monga SP. Liver progenitors and adult cell plasticity in hepatic injury and repair: knowns and unknowns. Annu Rev Pathol. 2020;15:23–50.

    Article  CAS  PubMed  Google Scholar 

  34. Liu TC, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol. 2016;11:127–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cao L, Xu H, Wang G, Liu M, Tian D, Yuan Z. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int Immunopharmacol. 2019;72:264–74.

    Article  CAS  PubMed  Google Scholar 

  36. Soontararak S, Chow L, Johnson V, Coy J, Wheat W, Regan D, et al. Mesenchymal stem cells (MSC) derived from induced pluripotent stem cells (iPSC) equivalent to adipose-derived MSC in promoting intestinal healing and microbiome normalization in mouse inflammatory bowel disease model. Stem Cells Transl Med. 2018;7:456–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Turner MW. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today. 1996;17:532–40.

    Article  CAS  PubMed  Google Scholar 

  38. Minchinton RM, Dean MM, Clark TR, Heatley S, Mullighan CG. Analysis of the relationship between mannose-binding lectin (MBL) genotype, MBL levels and function in an Australian blood donor population. Scand J Immunol. 2002;56:630–41.

    Article  CAS  PubMed  Google Scholar 

  39. Stravalaci M, Pagani I, Paraboschi EM, Pedotti M, Doni A, Scavello F, et al. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat Immunol. 2022;23:275–86.

    Article  CAS  PubMed  Google Scholar 

  40. Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307:1169–77.

    Article  CAS  PubMed  Google Scholar 

  41. Panés J, García-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet. 2016;388:1281–90.

    Article  PubMed  Google Scholar 

  42. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2(-) mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020;11:216–28.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol. 2023;20:1–12.

    Article  Google Scholar 

  44. Giri J, Das R, Nylen E, Chinnadurai R, Galipeau J. CCL2 and CXCL12 derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury. Cell Rep. 2020;30:1923–.e1924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gonzalez-Rey E, Anderson P, González MA, Rico L, Büscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58:929–39.

    Article  CAS  PubMed  Google Scholar 

  46. Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis. 2002;33:77–80.

    Article  CAS  PubMed  Google Scholar 

  47. Liu H, Li P, Zhang S, Xiang J, Yang R, Liu J, et al. Prrx1 marks stem cells for bone, white adipose tissue and dermis in adult mice. Nat Genet. 2022;54:1946–58.

    Article  CAS  PubMed  Google Scholar 

  48. Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010;2:640–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125:2621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiao G, Cheng H, Cao H, Chen K, Tu Y, Yu S, et al. Critical role of filamin-binding LIM protein 1 (FBLP-1)/migfilin in regulation of bone remodeling. J Biol Chem. 2012;287:21450–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Budgude P, Kale V, Vaidya A. Cryopreservation of mesenchymal stromal cell-derived extracellular vesicles using trehalose maintains their ability to expand hematopoietic stem cells in vitro. Cryobiology. 2021;98:152–63.

    Article  CAS  PubMed  Google Scholar 

  52. Imai Y, Nakagawa S, Ito Y, Kawano T, Slutsky AS, Miyasaka K. Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J Appl Physiol. 2001;91:1836–44.

    Article  CAS  PubMed  Google Scholar 

  53. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Peña AS, Meuwissen SG, et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998;114:385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He T, Shang J, Gao C, Guan X, Chen Y, Zhu L, et al. A novel SIRT6 activator ameliorates neuroinflammation and ischemic brain injury via EZH2/FOXC1 axis. Acta Pharm Sin B. 2021;11:708–26.

    Article  CAS  PubMed  Google Scholar 

  55. Kim JJ, Shajib MS, Manocha MM, Khan WI. Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp. 2012;1:3678.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Core Research Facilities of Southern University of Science and Technology. This work was supported, in part, by the National Natural Science Foundation of China Grants (81991513, 82230081, 82250710175, 82261160395, 82004395), the National Key Research and Development Program of China Grants (2019YFA0906004), the Guangdong Provincial Science and Technology Innovation Council Grant (2017B030301018), and the Science and Technology Innovation Commission of Shenzhen Municipal Government Grants (CYJ20220818100617036, ZDSYS20140509142721429). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Study design: GX, TH, BZ, GS, XB and HC. Study conduct and data collection: TH, ZB, GS, YL, QY, SL, GM, WJ, XW, YZ, DG, QY, TC and GX. Data analysis: TH, BZ, HC and GX. Data interpretation: GX, CL, TH, SH, TC, XB and DC. Drafting the manuscript: GX and TH. TH, HC and GX take the responsibility for the integrity of the data analysis.

Corresponding authors

Correspondence to Xiaochun Bai, Tao Cheng, Huiling Cao or Guozhi Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The animal experiments conformed to the guidelines and regulatory standards of the Institutional Animal Care and Use Committee (IACUC) at the Southern University of Science and Technology, No. SUSTC-JY2019153.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Zhou, B., Sun, G. et al. The bone–liver interaction modulates immune and hematopoietic function through Pinch-Cxcl12-Mbl2 pathway. Cell Death Differ 31, 90–105 (2024). https://doi.org/10.1038/s41418-023-01243-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01243-9

Search

Quick links