Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDK13 promotes lipid deposition and prostate cancer progression by stimulating NSUN5-mediated m5C modification of ACC1 mRNA

Abstract

Cyclin-dependent kinases (CDKs) regulate cell cycle progression and the transcription of a number of genes, including lipid metabolism-related genes, and aberrant lipid metabolism is involved in prostate carcinogenesis. Previous studies have shown that CDK13 expression is upregulated and fatty acid synthesis is increased in prostate cancer (PCa). However, the molecular mechanisms linking CDK13 upregulation and aberrant lipid metabolism in PCa cells remain largely unknown. Here, we showed that upregulation of CDK13 in PCa cells increases the fatty acyl chains and lipid classes, leading to lipid deposition in the cells, which is positively correlated with the expression of acetyl-CoA carboxylase (ACC1), the first rate-limiting enzyme in fatty acid synthesis. Gain- and loss-of-function studies showed that ACC1 mediates CDK13-induced lipid accumulation and PCa progression by enhancing lipid synthesis. Mechanistically, CDK13 interacts with RNA-methyltransferase NSUN5 to promote its phosphorylation at Ser327. In turn, phosphorylated NSUN5 catalyzes the m5C modification of ACC1 mRNA, and then the m5C-modified ACC1 mRNA binds to ALYREF to enhance its stability and nuclear export, thereby contributing to an increase in ACC1 expression and lipid deposition in PCa cells. Overall, our results disclose a novel function of CDK13 in regulating the ACC1 expression and identify a previously unrecognized CDK13/NSUN5/ACC1 pathway that mediates fatty acid synthesis and lipid accumulation in PCa cells, and targeting this newly identified pathway may be a novel therapeutic option for the treatment of PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CDK13 promotes fatty acid synthesis and lipid deposition in PCa cells.
Fig. 2: CDK13 is positively correlated with the expression of key fatty acid synthesis genes.
Fig. 3: ACC1 mediates CDK13-induced lipid deposition and PCa progression.
Fig. 4: CDK13 interacts with NSUN5 to promote ACC1 expression.
Fig. 5: NSUN5 promotes ACC1 expression and lipid deposition by regulating the m5C modification of ACC1 mRNA.
Fig. 6: ALYREF facilitates the nuclear export of ACC1 mRNA mediated by NSUN5.
Fig. 7: Phosphorylation of NSUN5 by CDK13 enhances lipid deposition.
Fig. 8: Blockade of CDK13/NSUN5/ACC1 pathway-mediated fatty acid synthesis inhibits PCa progression.

Similar content being viewed by others

Data availability

All data is included within the main text and supplementary files.

References

  1. Coughlin SS, Vernon M, Klaassen Z, Tingen MS, Cortes JE. Knowledge of prostate cancer among African American men: a systematic review. Prostate. 2021;81:202–13. https://doi.org/10.1002/pros.24097.

    Article  PubMed  Google Scholar 

  2. Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, et al. Prostate cancer. Nat Rev Dis Primers. 2021;7:9 https://doi.org/10.1038/s41572-020-00243-0.

    Article  PubMed  Google Scholar 

  3. Nevedomskaya E, Baumgart SJ, Haendler B. Recent advances in prostate cancer treatment and drug discovery. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19051359.

  4. Teo MY, Rathkopf DE, Kantoff P. Treatment of advanced prostate cancer. Annu Rev Med. 2019;70:479–99. https://doi.org/10.1146/annurev-med-051517-011947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143:3050–60. https://doi.org/10.1242/dev.137075.

    Article  CAS  PubMed  Google Scholar 

  6. Wang WL, Tenniswood M. Vitamin D, intermediary metabolism and prostate cancer tumor progression. Front Physiol. 2014;5:183 https://doi.org/10.3389/fphys.2014.00183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Quiros-Gonzalez I, Gonzalez-Menendez P, Mayo JC, Hevia D, Artime-Naveda F, Fernandez-Vega S et al. Androgen-dependent prostate cancer cells reprogram their metabolic signature upon GLUT1 upregulation by manganese superoxide dismutase. Antioxidants (Basel). 2022;11. https://doi.org/10.3390/antiox11020313.

  8. Xu H, Chen Y, Gu M, Liu C, Chen Q, Zhan M et al. Fatty acid metabolism reprogramming in advanced prostate cancer. Metabolites. 2021;11. https://doi.org/10.3390/metabo11110765.

  9. Li EQ, Zhao W, Zhang C, Qin LZ, Liu SJ, Feng ZQ, et al. Synthesis and anti-cancer activity of ND-646 and its derivatives as acetyl-CoA carboxylase 1 inhibitors. Eur J Pharm Sci. 2019;137:105010 https://doi.org/10.1016/j.ejps.2019.105010.

    Article  CAS  PubMed  Google Scholar 

  10. Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 2016;22:1108–19. https://doi.org/10.1038/nm.4181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 2006;66:5287–94. https://doi.org/10.1158/0008-5472.CAN-05-1489.

    Article  CAS  PubMed  Google Scholar 

  12. Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 2005;65:6719–25. https://doi.org/10.1158/0008-5472.CAN-05-0571.

    Article  CAS  PubMed  Google Scholar 

  13. Guo H, Wang B, Xu K, Nie L, Fu Y, Wang Z, et al. m(6)A Reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1. Front Oncol. 2020;10:553045 https://doi.org/10.3389/fonc.2020.553045.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang C, Meng X, Zhou Y, Yu J, Li Q, Liao Z, et al. Long noncoding RNA CTD-2245E15.3 promotes anabolic enzymes ACC1 and PC to support non-small cell lung cancer growth. Cancer Res. 2021;81:3509–24. https://doi.org/10.1158/0008-5472.CAN-19-3806.

    Article  CAS  PubMed  Google Scholar 

  15. Song J, Zhai J, Bian E, Song Y, Yu J, Ma C. Transcriptome-wide annotation of m(5)C RNA modifications using machine learning. Front Plant Sci. 2018;9:519 https://doi.org/10.3389/fpls.2018.00519.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66. https://doi.org/10.1038/nrc2602.

    Article  CAS  PubMed  Google Scholar 

  17. Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy. Cancer Discov. 2020;10:351–70. https://doi.org/10.1158/2159-8290.CD-19-0528.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao X, Feng D, Wang Q, Abdulla A, Xie XJ, Zhou J, et al. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. J Clin Invest. 2012;122:2417–27. https://doi.org/10.1172/JCI61462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Itkonen HM, Poulose N, Walker S, Mills IG. CDK9 inhibition induces a metabolic switch that renders prostate cancer cells dependent on fatty acid oxidation. Neoplasia. 2019;21:713–20. https://doi.org/10.1016/j.neo.2019.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. You BJ, Chen LY, Hsu PH, Sung PH, Hung YC, Lee HZ. Orlistat displays antitumor activity and enhances the efficacy of paclitaxel in human hepatoma Hep3B cells. Chem Res Toxicol. 2019;32:255–64. https://doi.org/10.1021/acs.chemrestox.8b00269.

    Article  CAS  PubMed  Google Scholar 

  21. Santiappillai NT, Abuhammad S, Slater A, Kirby L, McArthur GA, Sheppard KE et al. CDK4/6 inhibition reprograms mitochondrial metabolism in BRAF(V600) melanoma via a p53 dependent pathway. Cancers (Basel). 2021;13. https://doi.org/10.3390/cancers13030524.

  22. Qi JC, Yang Z, Lin T, Ma L, Wang YX, Zhang Y, et al. CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 contributes to prostate carcinogenesis. J Exp Clin Cancer Res. 2021;40:2 https://doi.org/10.1186/s13046-020-01814-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou L, Song Z, Hu J, Liu L, Hou Y, Zhang X, et al. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3. Theranostics. 2021;11:841–60. https://doi.org/10.7150/thno.49384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stoykova GE, Schlaepfer IR. Lipid metabolism and endocrine resistance in prostate cancer, and new opportunities for therapy. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20112626.

  25. Hamid A, Kusuma Putra HW, Sari NP, Diana P, Sesari SS, Novita E, et al. Early upregulation of AR and steroidogenesis enzyme expression after 3 months of androgen-deprivation therapy. BMC Urol. 2020;20:71 https://doi.org/10.1186/s12894-020-00627-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heissenberger C, Liendl L, Nagelreiter F, Gonskikh Y, Yang G, Stelzer EM, et al. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res. 2019;47:11807–25. https://doi.org/10.1093/nar/gkz1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27:606–25. https://doi.org/10.1038/cr.2017.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wickramasinghe VO, Laskey RA. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol. 2015;16:431–42. https://doi.org/10.1038/nrm4010.

    Article  CAS  PubMed  Google Scholar 

  29. Fan Z, Devlin JR, Hogg SJ, Doyle MA, Harrison PF, Todorovski I et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci Adv. 2020;6. https://doi.org/10.1126/sciadv.aaz5041.

  30. Wang C, Xu H, Lin S, Deng W, Zhou J, Zhang Y, et al. GPS 5.0: an update on the prediction of kinase-specific phosphorylation sites in proteins. Genomics Proteomics Bioinformatics. 2020;18:72–80. https://doi.org/10.1016/j.gpb.2020.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liang K, Gao X, Gilmore JM, Florens L, Washburn MP, Smith E, et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol Cell Biol. 2015;35:928–38. https://doi.org/10.1128/MCB.01426-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng M, Yang D, Hou Y, Liu S, Zhao M, Qin Y, et al. Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell Death Dis. 2019;10:228 https://doi.org/10.1038/s41419-019-1475-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sena LA, Denmeade SR. Fatty acid synthesis in prostate cancer: vulnerability or epiphenomenon? Cancer Res. 2021;81:4385–93. https://doi.org/10.1158/0008-5472.CAN-21-1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27:57–71. https://doi.org/10.1016/j.ccell.2014.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 2017;26:394–406 e396. https://doi.org/10.1016/j.cmet.2017.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fhu CW, Ali A. Fatty acid synthase: an emerging target in cancer. Molecules. 2020;25. https://doi.org/10.3390/molecules25173935.

  37. Zhang M, Song J, Yuan W, Zhang W, Sun Z. Roles of RNA methylation on tumor immunity and clinical implications. Front Immunol. 2021;12:641507 https://doi.org/10.3389/fimmu.2021.641507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42. https://doi.org/10.1038/nrm.2016.132.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Q, Liu F, Chen W, Miao H, Liang H, Liao Z, et al. The role of RNA m(5)C modification in cancer metastasis. Int J Biol Sci. 2021;17:3369–80. https://doi.org/10.7150/ijbs.61439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Engel M, Chen A. The emerging role of mRNA methylation in normal and pathological behavior. Genes Brain Behav. 2018;17:e12428 https://doi.org/10.1111/gbb.12428.

    Article  CAS  PubMed  Google Scholar 

  41. Xie W, Ma LL, Xu YQ, Wang BH, Li SM. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism. Biochem Biophys Res Commun. 2019;518:120–6. https://doi.org/10.1016/j.bbrc.2019.08.018.

    Article  CAS  PubMed  Google Scholar 

  42. Bohnsack KE, Hobartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m(5)C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes (Basel). 10, https://doi.org/10.3390/genes10020102 (2019).

  43. Hu Y, Chen C, Tong X, Chen S, Hu X, Pan B, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis. 2021;12:842 https://doi.org/10.1038/s41419-021-04127-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xue M, Shi Q, Zheng L, Li Q, Yang L, Zhang Y. Gene signatures of m5C regulators may predict prognoses of patients with head and neck squamous cell carcinoma. Am J Transl Res. 2020;12:6841–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Even Y, Escande ML, Fayet C, Geneviere AM. CDK13, a kinase involved in pre-mRNA splicing, is a component of the perinucleolar compartment. PLoS One. 2016;11:e0149184 https://doi.org/10.1371/journal.pone.0149184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haruehanroengra P, Zheng YY, Zhou Y, Huang Y, Sheng J. RNA modifications and cancer. RNA Biol. 2020;17:1560–75. https://doi.org/10.1080/15476286.2020.1722449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen YS, Yang WL, Zhao YL, Yang YG. Dynamic transcriptomic m(5) C and its regulatory role in RNA processing. Wiley Interdiscip Rev RNA. 2021;12:e1639 https://doi.org/10.1002/wrna.1639.

    Article  CAS  PubMed  Google Scholar 

  48. Shi M, Zhang H, Wu X, He Z, Wang L, Yin S, et al. ALYREF mainly binds to the 5’ and the 3’ regions of the mRNA in vivo. Nucleic Acids Res. 2017;45:9640–53. https://doi.org/10.1093/nar/gkx597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang Z, Qu CB, Zhang Y, Zhang WF, Wang DD, Gao CC, et al. Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene. 2019;38:2516–32. https://doi.org/10.1038/s41388-018-0602-8.

    Article  CAS  PubMed  Google Scholar 

  50. Wang Y, Yang Z, Gu J, Zhang Y, Wang X, Teng Z, et al. Estrogen receptor beta increases clear cell renal cell carcinoma stem cell phenotype via altering the circPHACTR4/miR-34b-5p/c-Myc signaling. FASEB J. 2022;36:e22163 https://doi.org/10.1096/fj.202101645R.

    Article  CAS  PubMed  Google Scholar 

  51. Yang Z, Zheng B, Zhang Y, He M, Zhang XH, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477–89. https://doi.org/10.1016/j.bbadis.2015.04.012.

    Article  CAS  PubMed  Google Scholar 

  52. Hunziker M, Barandun J, Petfalski E, Tan D, Delan-Forino C, Molloy KR, et al. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nat Commun. 2016;7:12090 https://doi.org/10.1038/ncomms12090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dong XY, Huang YX, Yang Z, Chu XY, Wu J, Wang S, et al. Downregulation of ROR2 promotes dental pulp stem cell senescence by inhibiting STK4-FOXO1/SMS1 axis in sphingomyelin biosynthesis. Aging Cell. 2021;20:e13430 https://doi.org/10.1111/acel.13430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ren LX, Qi JC, Zhao AN, Shi B, Zhang H, Wang DD, et al. Myc-associated zinc-finger protein promotes clear cell renal cell carcinoma progression through transcriptional activation of the MAP2K2-dependent ERK pathway. Cancer Cell Int. 2021;21:323 https://doi.org/10.1186/s12935-021-02020-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Centenera MM, Scott JS, Machiels J, Nassar ZD, Miller DC, Zinonos I, et al. ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer. Cancer Res. 2021;81:1704–18. https://doi.org/10.1158/0008-5472.CAN-20-2511.

    Article  CAS  PubMed  Google Scholar 

  56. He X, Yang Z, Chu XY, Li YX, Zhu B, Huang YX, et al. ROR2 downregulation activates the MSX2/NSUN2/p21 regulatory axis and promotes dental pulp stem cell senescence. Stem Cells. 2022;40:290–302. https://doi.org/10.1093/stmcls/sxab024.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was partially supported by The National Natural Science Foundation of China (No. 82072842, 81972411, 81902573 and 81970216), and The Natural Science Foundation of Hebei Province (H2020206601, H2022206185).

Author information

Authors and Affiliations

Authors

Contributions

ZY, CQ and YZ carry out the design and conception. ZY, XC, HG ZH and BS carry out the methodology. YZ, ZH, JG, CZ, and YZ carry out the acquisition of the data. YZ, XC, ZY, JW and ZH carry out analysis and interpretation of the data. DW, HG, BS, and JG carry out animal models. ZY, XC, JW, and YZ carry out writing, review, and/or revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yong Zhang, Chang-Bao Qu or Zhan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Animal experimental procedures and operations approved by the ethics committee of the Second Hospital of Hebei Medical University, complied with the Guide for the Care and Use of Laboratory Animal, National Research Council.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, XN., Zhang, H. et al. CDK13 promotes lipid deposition and prostate cancer progression by stimulating NSUN5-mediated m5C modification of ACC1 mRNA. Cell Death Differ 30, 2462–2476 (2023). https://doi.org/10.1038/s41418-023-01223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01223-z

Search

Quick links