Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C-IGF1R encoded by cIGF1R acts as a molecular switch to restrict mitophagy of drug-tolerant persister tumour cells in non-small cell lung cancer

Abstract

The clinical efficacy of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs) is limited by the emergence of drug resistance. We hypothesise that restoring dysregulated circular RNAs under initial treatment with EGFR-TKIs may enhance their effectiveness. Through high-throughput screening, we identify that combining circular RNA IGF1R (cIGF1R) with EGFR-TKIs significantly synergises to suppress tumour regrowth following drug withdrawal. Mechanistically, cIGF1R interacts with RNA helicase A (RHA) to depress insulin-like growth factor 1 receptor (IGF1R) mRNA splicing, negatively regulating the parent IGF1R signalling pathway. This regulation is similar to that of IGF1R inhibitor, which induces drug-tolerant persister (DTP) state with activated mitophagy. The cIGF1R also encodes a peptide C-IGF1R that reduces Parkin-mediated ubiquitination of voltage-dependent anion channel 1 (VDAC1) to restrict mitophagy, acting as a molecular switch that promotes the transition of DTP to apoptosis. Our study shows that combining cIGF1R with EGFR-TKIs efficiently reduces the emergence of DTP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cIGF1R increases the efficacy of EGFR-TKIs.
Fig. 2: cIGF1R interferes with RHA to regulate IGF1R and cIGF1R expression.
Fig. 3: Comparison of the efficacy of EGFR-TKIs plus cIGF1R and EGFR-TKIs plus IGF1R inhibitor (IGF1Ri).
Fig. 4: Cells were apoptotic treated with O plus cIGF1R but entered a DTP state dependent on autophagy under the treatment of O plus IGF1Ri.
Fig. 5: cIGF1R-encoded protein C-IGF1R inhibited the mitophagy of DTP cells under EGFR-TKI and IGF1Ri combination therapy stress.
Fig. 6: C-IGF1R inhibits Parkin-mediated ubiquitination of VDAC1.
Fig. 7: The efficacy of cIGF1R combined with EGFR-TKIs was validated in mice.

Similar content being viewed by others

Data availability

CircRNA-seq and RNA-seq data have been deposited in the Gene Expression Omnibus (ncbi.nlm.nih.gov/geo) under accession number GSE211854. The TCGA Research Network (cancergenome.nih.gov) provided the RNA expression data of EGFR-wild-type and EGFR-mutant human LUAD. This document includes source data. All further data supporting the conclusions of this study are accessible upon reasonable request from the corresponding author.

References

  1. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8. https://doi.org/10.1056/NEJMoa0909530.

    Article  CAS  PubMed  Google Scholar 

  2. Liang W, Zhong R, He J. Osimertinib in EGFR-mutated lung cancer. N Engl J Med. 2021;384:675. https://doi.org/10.1056/NEJMc2033951.

    Article  PubMed  Google Scholar 

  3. Schoenfeld AJ, Yu HA. The evolving landscape of resistance to osimertinib. J Thorac Oncol. 2020;15:18–21. https://doi.org/10.1016/j.jtho.2019.11.005.

    Article  PubMed  Google Scholar 

  4. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376:2109–21. https://doi.org/10.1056/NEJMoa1616288.

    Article  CAS  PubMed  Google Scholar 

  5. Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol. 2022;19:499–514. https://doi.org/10.1038/s41571-022-00639-9.

  6. Zhao Y, Liu J, Cai X, Pan Z, Liu J, Yin W, et al. Efficacy and safety of first line treatments for patients with advanced epidermal growth factor receptor mutated, non-small cell lung cancer: systematic review and network meta-analysis. BMJ. 2019;367:l5460. https://doi.org/10.1136/bmj.l5460.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hosomi Y, Morita S, Sugawara S, Kato T, Fukuhara T, Gemma A, et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J Clin Oncol. 2020;38:115–23. https://doi.org/10.1200/jco.19.01488.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Q, Xu CR, Cheng Y, Liu YP, Chen GY, Cui JW, et al. Bevacizumab plus erlotinib in Chinese patients with untreated, EGFR-mutated, advanced NSCLC (ARTEMIS-CTONG1509): a multicenter phase 3 study. Cancer Cell. 2021;39:1279–91.e1273. https://doi.org/10.1016/j.ccell.2021.07.005.

    Article  CAS  PubMed  Google Scholar 

  9. Kawashima Y, Fukuhara T, Saito H, Furuya N, Watanabe K, Sugawara S, et al. Bevacizumab plus erlotinib versus erlotinib alone in Japanese patients with advanced, metastatic, EGFR-mutant non-small-cell lung cancer (NEJ026): overall survival analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Respir Med. 2022;10:72–82. https://doi.org/10.1016/s2213-2600(21)00166-1.

    Article  CAS  PubMed  Google Scholar 

  10. Akamatsu H, Toi Y, Hayashi H, Fujimoto D, Tachihara M, Furuya N, et al. Efficacy of osimertinib plus bevacizumab vs osimertinib in patients with EGFR T790M-mutated non-small cell lung cancer previously treated with epidermal growth factor receptor-tyrosine kinase inhibitor: West Japan Oncology Group 8715L phase 2 randomized clinical trial. JAMA Oncol. 2021;7:386–94. https://doi.org/10.1001/jamaoncol.2020.6758.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu TC, Lin CC. Antiangiogenesis may not be a universal booster of EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2022;17:1063–6. https://doi.org/10.1016/j.jtho.2022.06.012.

    Article  CAS  PubMed  Google Scholar 

  12. Oshima Y, Tanimoto T, Yuji K, Tojo A. EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated patients with non-small cell lung cancer. JAMA Oncol. 2018;4:1112–5. https://doi.org/10.1001/jamaoncol.2017.4526.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oxnard GR, Yang JC, Yu H, Kim SW, Saka H, Horn L, et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol. 2020;31:507–16. https://doi.org/10.1016/j.annonc.2020.01.013.

    Article  CAS  PubMed  Google Scholar 

  14. Shen S, Vagner S, Robert C. Persistent cancer cells: the deadly survivors. Cell. 2020;183:860–74. https://doi.org/10.1016/j.cell.2020.10.027.

    Article  CAS  PubMed  Google Scholar 

  15. Kurppa KJ, Liu Y, To C, Zhang T, Fan M, Vajdi A, et al. Treatment-induced tumour dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell. 2020;37:104–12.e112. https://doi.org/10.1016/j.ccell.2019.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, Nixon AML, et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell. 2021;184:226–42.e221. https://doi.org/10.1016/j.cell.2020.11.018.

    Article  CAS  PubMed  Google Scholar 

  17. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50. https://doi.org/10.1038/nature24297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dhimolea E, de Matos Simoes R, Kansara D, Al’Khafaji A, Bouyssou J, Weng X, et al. An embryonic diapause-like adaptation with suppressed myc activity enables tumor treatment persistence. Cancer Cell. 2021;39:240–56.e211. https://doi.org/10.1016/j.ccell.2020.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell. 2022;185:1728–44.e1716. https://doi.org/10.1016/j.cell.2022.03.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8. https://doi.org/10.1038/nature11993.

    Article  CAS  PubMed  Google Scholar 

  21. Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther. 2020;5:298. https://doi.org/10.1038/s41392-020-00375-5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 2022;7:121. https://doi.org/10.1038/s41392-022-00975-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sang Y, Chen B, Song X, Li Y, Liang Y, Han D, et al. circRNA_0025202 regulates tamoxifen sensitivity and tumour progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther. 2019;27:1638–52. https://doi.org/10.1016/j.ymthe.2019.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Chen T, Li C, Li W, Zhou X, Li Y, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR. J Hematol Oncol. 2022;15:122. https://doi.org/10.1186/s13045-022-01345-w.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hou S, Qu D, Li Y, Zhu B, Liang D, Wei X, et al. XAB2 depletion induces intron retention in POLR2A to impair global transcription and promote cellular senescence. Nucleic Acids Res. 2019;47:8239–54. https://doi.org/10.1093/nar/gkz532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsalikis, J, Abdel-Nour, M, Farahvash, A, Sorbara, MT, Poon, S, Philpott, DJ et al. Isoginkgetin, a Natural Biflavonoid Proteasome Inhibitor, Sensitizes Cancer Cells to Apoptosis via Disruption of Lysosomal Homeostasis and Impaired Protein Clearance. Mol Cell Biol. 39, https://doi.org/10.1128/mcb.00489-18 (2019).

  27. Shao T, Pan YH, Xiong XD. Circular RNA: an important player with multiple facets to regulate its parental gene expression. Mol Ther Nucleic Acids. 2021;23:369–76. https://doi.org/10.1016/j.omtn.2020.11.008

    Article  CAS  PubMed  Google Scholar 

  28. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66. https://doi.org/10.1016/j.molcel.2014.08.019.

    Article  CAS  PubMed  Google Scholar 

  29. Aktaş T, Avşar Ilık İ, Maticzka D, Bhardwaj V, Pessoa Rodrigues C, Mittler G, et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature. 2017;544:115–9. https://doi.org/10.1038/nature21715.

    Article  PubMed  Google Scholar 

  30. Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21:475–90. https://doi.org/10.1038/s41580-020-0243-y.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159:134–47. https://doi.org/10.1016/j.cell.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  32. von Mehren M, George S, Heinrich MC, Schuetze SM, Yap JT, Yu JQ, et al. Linsitinib (OSI-906) for the treatment of adult and pediatric wild-type gastrointestinal stromal tumours, a SARC phase II study. Clin Cancer Res. 2020;26:1837–45. https://doi.org/10.1158/1078-0432.Ccr-19-1069.

    Article  Google Scholar 

  33. White E. The role for autophagy in cancer. J Clin Invest. 2015;125:42–6. https://doi.org/10.1172/jci73941.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42. https://doi.org/10.1038/nrc.2017.53.

    Article  CAS  PubMed  Google Scholar 

  35. Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 2021;23:278–91. https://doi.org/10.1038/s41556-021-00639-4.

    Article  CAS  PubMed  Google Scholar 

  36. Zhong J, Yang X, Chen J, He K, Gao X, Wu X, et al. Circular EZH2-encoded EZH2-92aa mediates immune evasion in glioblastoma via inhibition of surface NKG2D ligands. Nat Commun. 2022;13:4795. https://doi.org/10.1038/s41467-022-32311-2.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res. 2017;120:1812–24. https://doi.org/10.1161/circresaha.117.311082.

    Article  CAS  PubMed  Google Scholar 

  38. Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 2021;40:e104705. https://doi.org/10.15252/embj.2020104705.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Limagne E, Nuttin L, Thibaudin M, Jacquin E, Aucagne R, Bon M, et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell. 2022;40:136–52.e112. https://doi.org/10.1016/j.ccell.2021.12.009.

    Article  CAS  PubMed  Google Scholar 

  40. Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res. 2018;131:87–101. https://doi.org/10.1016/j.phrs.2018.03.010.

    Article  CAS  PubMed  Google Scholar 

  41. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edn)(1). Autophagy. 2021;17:1–382. https://doi.org/10.1080/15548627.2020.1797280.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73:1019–30. https://doi.org/10.1016/0092-8674(93)90279-y.

    Article  CAS  PubMed  Google Scholar 

  43. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell. 2019;176:869–81.e813. https://doi.org/10.1016/j.cell.2018.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8. https://doi.org/10.1038/nature11928.

    Article  CAS  PubMed  Google Scholar 

  45. Álvarez-Varela A, Novellasdemunt L, Barriga FM, Hernando-Momblona X, Cañellas-Socias A, Cano-Crespo S. et al. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nat Cancer. 2022;3:1052–70. https://doi.org/10.1038/s43018-022-00402-0.

  46. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170:548–63.e516. https://doi.org/10.1016/j.cell.2017.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25:628–40. https://doi.org/10.1038/s41591-019-0368-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25:620–7. https://doi.org/10.1038/s41591-019-0367-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng J, Metge F, Dieterich C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics. 2016;32:1094–6. https://doi.org/10.1093/bioinformatics/btv656.

    Article  CAS  PubMed  Google Scholar 

  52. Wang H, Song X, Wang Y, Yin X, Liang Y, Zhang T, et al. CircCNTNAP3-TP53-positive feedback loop suppresses malignant progression of esophageal squamous cell carcinoma. Cell Death Dis. 2020;11:1010. https://doi.org/10.1038/s41419-020-03217-y.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–34. https://doi.org/10.1007/s10822-013-9644-8.

    Article  PubMed  Google Scholar 

  54. Halgren TA. Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model. 2009;49:377–89. https://doi.org/10.1021/ci800324m.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (Grant No. 82372762, 82073211, 81702892, 82002434); The Project of Invigorating Health Care through Science, Technology and Education, Jiangsu Provincial Medical Innovation Team (CXTDA2017002); The Project of Invigorating Health Care through Science, Technology and Education, Jiangsu Provincial Medical Outstanding Talent (JCRCA2016001).

Author information

Authors and Affiliations

Authors

Contributions

FJ and GD designed experiments and wrote the manuscript. XS performed statistical analysis with the R language. HW, YL, TZ, YC, LX, and XY completed the basic experiment part. BC, WX and QM were responsible for clinical sample collection and subsequent sample delivery. GD and FJ helped to revise the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gaochao Dong or Feng Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The research conducted in this manuscript adhered to all applicable ethical regulations. Human tissue samples were obtained from the Department of Thoracic Surgery at Jiangsu Cancer Hospital. Ethical approval was granted by Nanjing Medical University. All mouse research was authorised by the Institutional Animal Care and Use Committee (IACUC) of Nanjing Medical University (IACUC-2209003).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liang, Y., Zhang, T. et al. C-IGF1R encoded by cIGF1R acts as a molecular switch to restrict mitophagy of drug-tolerant persister tumour cells in non-small cell lung cancer. Cell Death Differ 30, 2365–2381 (2023). https://doi.org/10.1038/s41418-023-01222-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01222-0

Search

Quick links