Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RUNDC1 inhibits autolysosome formation and survival of zebrafish via clasping ATG14-STX17-SNAP29 complex

Abstract

Autophagy serves as a pro-survival mechanism for a cell or a whole organism to cope with nutrient stress. Our understanding of the molecular regulation of this fusion event remains incomplete. Here, we identified RUNDC1 as a novel ATG14-interacting protein, which is highly conserved across vertebrates, including zebrafish and humans. By gain and loss of function studies, we demonstrate that RUNDC1 negatively modulates autophagy by blocking fusion between autophagosomes and lysosomes via inhibiting the assembly of the STX17-SNAP29-VAMP8 complex both in human cells and the zebrafish model. Moreover, RUNDC1 clasps the ATG14-STX17-SNAP29 complex via stimulating ATG14 homo-oligomerization to inhibit ATG14 dissociation. This also prevents VAMP8 from binding to STX17-SNAP29. We further identified that phosphorylation of RUNDC1 Ser379 is crucial to inhibit the assembly of the STX17-SNAP29-VAMP8 complex via promoting ATG14 homo-oligomerization. In line with our findings, RunDC1 is crucial for zebrafish in their response to nutrient-deficient conditions. Taken together, our findings demonstrate that RUNDC1 is a negative regulator of autophagy that restricts autophagosome fusion with lysosomes by clasping the ATG14-STX17-SNAP29 complex to hinder VAMP8 binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RUNDC1 is a protein partner of ATG14, but is not involved in the assembly of the PtdIns3K-C1 complex.
Fig. 2: RunDC1 negatively affects autophagy in zebrafish.
Fig. 3: RUNDC1 inhibits fusion between autophagosomes and lysosomes in cell and zebrafish models.
Fig. 4: RUNDC1 interacts with the ATG14-STX17-SNAP29 complex.
Fig. 5: RUNDC1 inhibits assembly of the VAMP8 -STX17-SNAP29 complex.
Fig. 6: RUNDC1 promotes ATG14 homo-oligomerization resulted in clasping of the ATG14-STX17-SNAP29 complex.
Fig. 7: RUNDC1 Ser379 phosphorylation inhibits ATG14 dissociation from the ATG14-STX17-SNAP29 complex.
Fig. 8: RunDC1 affects the survival of zebrafish larvae and adults in response to starvation.

Similar content being viewed by others

Data availability

The data analyzed during this study are included in this published article and the supplemental data files. Additional supporting data are available from the corresponding authors upon reasonable request.

References

  1. Kang C, You YJ, Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 2007;21:2161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levine B, Kroemer G. Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ. 2009;16:1–2.

    Article  CAS  PubMed  Google Scholar 

  3. Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nat Rev Genet. 2023;24:382–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature. 2010;466:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 2023;24:167–85.

    Article  CAS  PubMed  Google Scholar 

  7. Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature. 2015;520:563–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009;11:385–96.

    Article  CAS  PubMed  Google Scholar 

  9. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, et al. Autophagosomes form at ER-mitochondria contact sites. Nature. 2013;495:389–93.

    Article  CAS  PubMed  Google Scholar 

  10. Hurley JH, Young LN. Mechanisms of autophagy initiation. Annu Rev Biochem. 2017;86:225–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu R, Zhi X, Zhong Q. ATG14 controls SNARE-mediated autophagosome fusion with a lysosome. Autophagy. 2015;11:847–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Ge S, Ni B, He K, Zhu P, Wu X, et al. Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages. Autophagy. 2021;17:4218–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moreau K, Renna M, Rubinsztein DC. Connections between SNAREs and autophagy. Trends Biochem Sci. 2013;38:57–63.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021;22:733–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian X, Teng J, Chen J. New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy. 2021;17:2680–88.

  16. Zhao YG, Zhang H. Autophagosome maturation: An epic journey from the ER to lysosomes. J Cell Biol. 2019;218:757–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151:1256–69.

    Article  CAS  PubMed  Google Scholar 

  18. Llanos S, Efeyan A, Monsech J, Dominguez O, Serrano M. A high-throughput loss-of-function screening identifies novel p53 regulators. Cell Cycle. 2006;5:1880–5.

    Article  CAS  PubMed  Google Scholar 

  19. Jalali A, Amirian ES, Bainbridge MN, Armstrong GN, Liu Y, Tsavachidis S, et al. Targeted sequencing in chromosome 17q linkage region identifies familial glioma candidates in the Gliogene Consortium. Sci Rep. 2015;5:8278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McEwan DG, Dikic I. The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. Trends Cell Biol. 2011;21:195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy. 2015;11:28–45.

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen A, Lugarini F, David C, Hosnani P, Alagoz C, Friedrich A, et al. Metamorphic proteins at the basis of human autophagy initiation and lipid transfer. Mol Cell. 2023;83:2077–90.e12.

    Article  CAS  PubMed  Google Scholar 

  23. He C, Bartholomew CR, Zhou W, Klionsky DJ. Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy. 2009;5:520–6.

    Article  CAS  PubMed  Google Scholar 

  24. Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy. 2014;10:431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suster ML, Kikuta H, Fau - Urasaki A, Urasaki A, Fau - Asakawa K, Asakawa K, et al. Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol. 2009;561:41–63.

    Article  CAS  PubMed  Google Scholar 

  27. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–73.

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura S, Yoshimori T. New insights into autophagosome-lysosome fusion. J Cell Sci. 2017;130:1209–16.

    CAS  PubMed  Google Scholar 

  30. Diao J, Li L, Lai Y, Zhong Q. In Vitro Reconstitution of Autophagosome-Lysosome Fusion. Methods Enzymol. 2017;587:365–76.

    Article  CAS  PubMed  Google Scholar 

  31. Shen Q, Shi Y, Liu J, Su H, Huang J, Zhang Y, et al. Acetylation of STX17 (syntaxin 17) controls autophagosome maturation. Autophagy. 2021;17:1157–69.

  32. Zhang X, Wang L, Lak B, Li J, Jokitalo E, Wang Y. GRASP55 senses glucose deprivation through O-GlcNAcylation to promote autophagosome-lysosome fusion. Dev Cell. 2018;45:245–61.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo B, Liang Q, Li L, Hu Z, Wu F, Zhang P, et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat Cell Biol. 2014;16:1215–26.

    Article  CAS  PubMed  Google Scholar 

  34. Shen Q, Shi Y, Liu J, Su H, Huang J, Zhang Y, et al. Acetylation of STX17 (syntaxin 17) controls autophagosome maturation. Autophagy. 2021;17:1157–69.

    Article  CAS  PubMed  Google Scholar 

  35. Pellegrini FR, De Martino S, Fianco G, Ventura I, Valente D, Fiore M, et al. Blockage of autophagosome-lysosome fusion through SNAP29 O-GlcNAcylation promotes apoptosis via ROS production. Autophagy. 2023;19:2078–93.

  36. Pearlman SM, Serber Z, Ferrell JE Jr. A mechanism for the evolution of phosphorylation sites. Cell. 2011;147:934–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ravanan P, Srikumar IF, Talwar P. Autophagy: the spotlight for cellular stress responses. Life Sci. 2017;188:53–67.

    Article  CAS  PubMed  Google Scholar 

  38. Masselink W. Crispants take the spotlight. Lab Anim. 2021;50:95–6.

    Article  Google Scholar 

  39. Moravec CE, Voit GC, Otterlee J, Pelegri F. Identification of maternal-effect genes in zebrafish using maternal crispants. Development. 2021;148:dev199536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian X, Teng J, Chen J. New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy. 2021;17:2680–8.

    Article  CAS  PubMed  Google Scholar 

  41. Gibson TJ, Seiler M, Veitia RA. The transience of transient overexpression. Nat Methods. 2013;10:715–21.

    Article  CAS  PubMed  Google Scholar 

  42. Obara K, Ohsumi Y. Atg14: a key player in orchestrating autophagy. Int J Cell Biol. 2011;2011:713435.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao Y, Zou Z, Sun D, Li Y, Sinha SC, Yu L, et al. GLIPR2 is a negative regulator of autophagy and the BECN1-ATG14-containing phosphatidylinositol 3-kinase complex. Autophagy. 2021;17:2891–904.

  44. Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy. 2010;6:764–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan W, Nassiri A, Zhong Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA. 2011;108:7769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bernard A, Klionsky DJ. Toward an understanding of autophagosome-lysosome fusion: the unsuspected role of ATG14. Autophagy. 2015;11:583–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoon TY, Munson M. SNARE complex assembly and disassembly. Curr Biol. 2018;28:R367–R420.

    Article  Google Scholar 

  48. Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou X-Y, Zhang T, Ren L, Wu J-J, Wang W, Liu J-X. Copper elevated embryonic hemoglobin through reactive oxygen species during zebrafish erythrogenesis. Aquat Toxicol. 2016;175:1–11.

    Article  PubMed  Google Scholar 

  50. Subramaniam A, Žemaitis K, Talkhoncheh MS, Yudovich D, Bäckström A, Debnath S, et al. Lysine-specific demethylase 1A restricts ex vivo propagation of human HSCs and is a target of UM171. Blood. 2020;136:2151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Daniel Klionsky and Prof. Annemarie Meijer for sharing the GFP-Lc3 transgenic zebrafish line. We also thank the Hubei University of Technology for financial and equipment support for this research.

Funding

This work was supported by the National Natural Science Foundation of China (32000523 to RZ, 82273970 and 32070726 to JFT, 31871176 to XZC, 32270768 to CFZ), International Science and Technology Cooperation Project of Hubei Province (2022EHB038 to CFZ), Wuhan Science and Technology Project (2022020801020272 to C.F.Z) and Innovation Group Project of Hubei Province (2023AFA026).

Author information

Authors and Affiliations

Authors

Contributions

RZ, YY, CH, XZ and SW performed molecular biology and zebrafish experiments and write the main manuscript. JT and CZ designed the whole project and supervised all experiments. RZ, YY, CH, XZ conducted all experiments and analyzed the data. VC, NL, YR, LC, LY, GZ, LS, DY, XF, HY, LH, SX, GD, DA, MM, XC, and CM contributed with critical feedback on the presented work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jingfeng Tang or Cefan Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The experimental protocol for animal studies was reviewed and approved by the institutional animal care and use committee of the Hubei University of Technology.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Yang, Y., He, C. et al. RUNDC1 inhibits autolysosome formation and survival of zebrafish via clasping ATG14-STX17-SNAP29 complex. Cell Death Differ 30, 2231–2248 (2023). https://doi.org/10.1038/s41418-023-01215-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01215-z

Search

Quick links