Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-transcriptional dynamics and RNA homeostasis in autophagy and cancer

Abstract

Autophagy is an essential recycling and quality control pathway which preserves cellular and organismal homeostasis. As a catabolic process, autophagy degrades damaged and aged intracellular components in response to conditions of stress, including nutrient deprivation, oxidative and genotoxic stress. Autophagy is a highly adaptive and dynamic process which requires an intricately coordinated molecular control. Here we provide an overview of how autophagy is regulated post-transcriptionally, through RNA processing events, epitranscriptomic modifications and non-coding RNAs. We further discuss newly revealed RNA-binding properties of core autophagy machinery proteins and review recent indications of autophagy’s ability to impact cellular RNA homeostasis. From a physiological perspective, we examine the biological implications of these emerging regulatory layers of autophagy, particularly in the context of nutrient deprivation and tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Autophagy regulation through alternative signaling arms downstream of mTORC1.
Fig. 2: The implications of RNA-binding proteins in autophagy.
Fig. 3: Degradation of RNA-containing substrates by autophagy.
Fig. 4: Non-coding RNAs: regulating the regulators in autophagy.

Similar content being viewed by others

References

  1. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176:11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, et al. Autophagy in major human diseases. EMBO J. 2021;40:e108863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24:1–16.

  4. Abildgaard MH, Brynjolfsdottir SH, Frankel LB. The autophagy-RNA interplay: degradation and beyond. Trends Biochem Sci. 2020;45:845–57.

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez-Rodriguez P, Klionsky DJ, Joseph B. Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun. 2022;13:2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frankel LB, Lubas M, Lund AH. Emerging connections between RNA and autophagy. Autophagy. 2017;13:3–23.

    Article  CAS  PubMed  Google Scholar 

  7. Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy. 2022;18:949–70.

    Article  CAS  PubMed  Google Scholar 

  8. Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20:303–22.

    Article  CAS  PubMed  Google Scholar 

  9. Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020;52:400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sendinc E, Shi Y. RNA m6A methylation across the transcriptome. Mol Cell. 2023;83:428–41.

    Article  CAS  PubMed  Google Scholar 

  11. Hu L, Liu S, Peng Y, Ge R, Su R, Senevirathne C, et al. m(6)A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat Biotechnol. 2022;40:1210–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28:616–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho S, Lee G, Pickering BF, Jang C, Park JH, He L, et al. mTORC1 promotes cell growth via m(6)A-dependent mRNA degradation. Mol Cell. 2021;81:2064–75.e2068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee G, Zheng Y, Cho S, Jang C, England C, Dempsey JM, et al. Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling. Cell. 2017;171:1545–58.e1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nandagopal N, Roux PP. Regulation of global and specific mRNA translation by the mTOR signaling pathway. Translation (Austin). 2015;3:e983402.

    PubMed  Google Scholar 

  17. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284:12297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8:903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang HW, Weng JH, Lee WX, Hu Y, Gu L, Cho S, et al. mTORC1-chaperonin CCT signaling regulates m(6)A RNA methylation to suppress autophagy. Proc Natl Acad Sci USA. 2021;118:e2021945118.

  20. Kim AR, Choi KW. TRiC/CCT chaperonins are essential for organ growth by interacting with insulin/TOR signaling in Drosophila. Oncogene. 2019;38:4739–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hao W, Dian M, Zhou Y, Zhong Q, Pang W, Li Z, et al. Autophagy induction promoted by m(6)A reader YTHDF3 through translation upregulation of FOXO3 mRNA. Nat Commun. 2022;13:5845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016;129:2475–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin S, Zhang X, Miao Y, Liang P, Zhu K, She Y, et al. m(6)A RNA modification controls autophagy through upregulating ULK1 protein abundance. Cell Res. 2018;28:955–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Wu R, Liu Y, Zhao Y, Bi Z, Yao Y, et al. m(6)A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy. 2020;16:1221–35.

    Article  CAS  PubMed  Google Scholar 

  25. Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 2019;15:1419–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gulati P, Cheung MK, Antrobus R, Church CD, Harding HP, Tung YC, et al. Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc Natl Acad Sci USA. 2013;110:2557–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Wang J, Xu D, Xiang Z, Ding J, Yang X, et al. m(6)A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells. Autophagy. 2021;17:457–75.

    Article  CAS  PubMed  Google Scholar 

  28. Wang K, Wang S, Zhang Y, Xie L, Song X, Song X. SNORD88C guided 2'-O-methylation of 28S rRNA regulates SCD1 translation to inhibit autophagy and promote growth and metastasis in non-small cell lung cancer. Cell Death Differ. 2023;30:341–55.

    Article  CAS  PubMed  Google Scholar 

  29. Hocine S, Singer RH, Grunwald D. RNA processing and export. Cold Spring Harb Perspect Biol. 2010;2:a000752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell. 2011;43:853–66.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Gonzalez-Porta M, Santos S, Brazma A, Marioni JC, Aebersold R, et al. Impact of alternative splicing on the human proteome. Cell Rep. 2017;20:1229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017;18:437–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science. 2008;320:1643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA. 2009;106:7028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sakellariou D, Tiberti M, Kleiber TH, Blazquez L, Lopez AR, Abildgaard MH, et al. eIF4A3 regulates the TFEB-mediated transcriptional response via GSK3B to control autophagy. Cell Death Differ. 2021;28:3344–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sakellariou D, Frankel LB. EIF4A3: a gatekeeper of autophagy. Autophagy. 2021;17:4504–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park JY, Sohn HY, Koh YH, Jo C. A splicing variant of TFEB negatively regulates the TFEB-autophagy pathway. Sci Rep. 2021;11:21119.

    Article  PubMed  PubMed Central  Google Scholar 

  38. B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41:7683–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Margariti A, Li H, Chen T, Martin D, Vizcay-Barrena G, Alam S, et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem. 2013;288:859–72.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Z, Qian Q, Li M, Shao F, Ding WX, Lira VA, et al. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy. 2021;17:1841–55.

    Article  CAS  PubMed  Google Scholar 

  41. Wang CC, Peng H, Wang Z, Yang J, Hu RG, Li CY, et al. TRIM72-mediated degradation of the short form of p62/SQSTM1 rheostatically controls selective autophagy in human cells. Mil Med Res. 2022;9:35.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Moharir SC, Bansal M, Ramachandran G, Ramaswamy R, Rawat S, Raychaudhuri S, et al. Identification of a splice variant of optineurin which is defective in autophagy and phosphorylation. Biochim Biophys Acta Mol Cell Res. 2018;1865:1526–38.

    Article  CAS  PubMed  Google Scholar 

  43. Berkovits BD, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature. 2015;522:363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Malka Y, Alkan F, Ju S, Korner PR, Pataskar A, Shulman E, et al. Alternative cleavage and polyadenylation generates downstream uncapped RNA isoforms with translation potential. Mol Cell. 2022;82:3840–55.e3848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang HW, Hu Y, Chen CL, Xia B, Zirin J, Yuan M, et al. The TORC1-regulated CPA complex rewires an RNA processing network to drive autophagy and metabolic reprogramming. Cell Metab. 2018;27:1040–54.e1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hwang HJ, Ha H, Lee BS, Kim BH, Song HK, Kim YK. LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy. Nat Commun. 2022;13:1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, et al. A protein conjugation system essential for autophagy. Nature. 1998;395:395–8.

    Article  CAS  PubMed  Google Scholar 

  48. Mizushima N. The ATG conjugation systems in autophagy. Curr. Opin. Cell Biol. 2020;63:1–10.

    Article  Google Scholar 

  49. Vats S, Galli T. Role of SNAREs in unconventional secretion-focus on the VAMP7-dependent secretion. Front Cell Dev Biol. 2022;10:884020.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kakanj P, Bhide S, Moussian B, Leptin M. Autophagy-mediated plasma membrane removal promotes the formation of epithelial syncytia. EMBO J. 2022;41:e109992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reid SE, Kolapalli SP, Nielsen TM, Frankel LB. Canonical and non-canonical roles for ATG8 proteins in autophagy and beyond. Front Mol Biosci. 2022;9:1074701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou J, Ma J, Yang C, Zhu X, Li J, Zheng X, et al. A non-canonical role of ATG8 in Golgi recovery from heat stress in plants. Nat Plants. 2023;9:749–65.

  53. Rojas-Rios P, Chartier A, Pierson S, Severac D, Dantec C, Busseau I, et al. Translational control of autophagy by Orb in the Drosophila Germline. Dev Cell. 2015;35:622–31.

    Article  CAS  PubMed  Google Scholar 

  54. Yamaguchi T, Suzuki T, Sato T, Takahashi A, Watanabe H, Kadowaki A, et al. The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Sci Signal. 2018;11:eaan3638.

    Article  PubMed  Google Scholar 

  55. Yin Z, Zhang Z, Lei Y, Klionsky DJ. Bidirectional roles of the Ccr4-Not complex in regulating autophagy before and after nitrogen starvation. Autophagy. 2023;19:415–25.

    Article  CAS  PubMed  Google Scholar 

  56. Cheng DD, Li J, Li SJ, Yang QC, Fan CY. CNOT1 cooperates with LMNA to aggravate osteosarcoma tumorigenesis through the Hedgehog signaling pathway. Mol Oncol. 2017;11:388–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 2013;45:186–90.

    Article  PubMed  Google Scholar 

  58. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147:344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Seiden-Long IM, Brown KR, Shih W, Wigle DA, Radulovich N, Jurisica I, et al. Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer. Oncogene. 2006;25:91–102.

    Article  CAS  PubMed  Google Scholar 

  60. Horos R, Buscher M, Kleinendorst R, Alleaume AM, Tarafder AK, Schwarzl T, et al. The small non-coding vault RNA1-1 acts as a riboregulator of autophagy. Cell. 2019;176:1054–67.e1012.

    Article  CAS  PubMed  Google Scholar 

  61. Buscher M, Horos R, Hentze MW. 'High vault-age': non-coding RNA control of autophagy. Open Biol. 2020;10:190307.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Buscher M, Horos R, Huppertz I, Haubrich K, Dobrev N, Baudin F, et al. Vault RNA1-1 riboregulates the autophagic function of p62 by binding to lysine 7 and arginine 21, both of which are critical for p62 oligomerization. RNA. 2022;28:742–55.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Karras P, Riveiro-Falkenbach E, Canon E, Tejedo C, Calvo TG, Martinez-Herranz R, et al. p62/SQSTM1 fuels melanoma progression by opposing mRNA decay of a selective set of pro-metastatic factors. Cancer Cell. 2019;35:46–63.e10.

    Article  CAS  PubMed  Google Scholar 

  64. Degrauwe N, Schlumpf TB, Janiszewska M, Martin P, Cauderay A, Provero P, et al. The RNA binding protein IMP2 preserves glioblastoma stem cells by preventing let-7 target gene silencing. Cell Rep. 2016;15:1634–47.

    Article  CAS  PubMed  Google Scholar 

  65. Lin WC, Chen LH, Hsieh YC, Yang PW, Lai LC, Chuang EY, et al. miR-338-5p inhibits cell proliferation, colony formation, migration and cisplatin resistance in esophageal squamous cancer cells by targeting FERMT2. Carcinogenesis. 2019;40:883–92.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang X, Dai M, Li S, Li M, Cheng B, Ma T, et al. The emerging potential role of p62 in cancer treatment by regulating metabolism. Trends Endocrinol Metab. 2023;34:474–88.

  67. Wu X, Xu L. The RNA-binding protein HuR in human cancer: a friend or foe? Adv Drug Deliv Rev. 2022;184:114179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ji E, Kim C, Kang H, Ahn S, Jung M, Hong Y, et al. RNA binding protein HuR promotes autophagosome formation by regulating expression of autophagy-related proteins 5, 12, and 16 in human hepatocellular carcinoma cells. Mol Cell Biol. 2019;39:e00508–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy. 2018;14:2083–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Viiri J, Amadio M, Marchesi N, Hyttinen JM, Kivinen N, Sironen R, et al. Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells. PLoS One. 2013;8:e69563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li XX, Xiao L, Chung HK, Ma XX, Liu X, Song JL, et al. Interaction between HuR and circPABPN1 modulates autophagy in the intestinal epithelium by altering ATG16L1 translation. Mol Cell Biol. 2020;40:e00492–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shao Z, Ni L, Hu S, Xu T, Meftah Z, Yu Z, et al. RNA-binding protein HuR suppresses senescence through Atg7 mediated autophagy activation in diabetic intervertebral disc degeneration. Cell Prolif. 2021;54:e12975.

    Article  CAS  PubMed  Google Scholar 

  73. Bishayee K, Habib K, Nazim UM, Kang J, Szabo A, Huh SO, et al. RNA binding protein HuD promotes autophagy and tumor stress survival by suppressing mTORC1 activity and augmenting ARL6IP1 levels. J Exp Clin Cancer Res. 2022;41:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu M, Bai J, He S, Villarreal R, Hu D, Zhang C, et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab. 2014;19:967–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang C, Wang Z, Kang Y, Yi Q, Wang T, Bai Y, et al. Stress granule homeostasis is modulated by TRIM21-mediated ubiquitination of G3BP1 and autophagy-dependent elimination of stress granules. Autophagy. 2023;19:1934–51.

  76. Buchan JR, Kolaitis RM, Taylor JP, Parker R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell. 2013;153:1461–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131–45.

    Article  CAS  PubMed  Google Scholar 

  78. An H, Harper JW. Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat Cell Biol. 2018;20:135–43.

    Article  CAS  PubMed  Google Scholar 

  79. Huang H, Kawamata T, Horie T, Tsugawa H, Nakayama Y, Ohsumi Y, et al. Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast. EMBO J. 2015;34:154–68.

    Article  CAS  PubMed  Google Scholar 

  80. Makino S, Kawamata T, Iwasaki S, Ohsumi Y. Selectivity of mRNA degradation by autophagy in yeast. Nat Commun. 2021;12:2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hickl D, Drews F, Girke C, Zimmer D, Muhlhaus T, Hauth J, et al. Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. J Exp Bot. 2021;72:6867–81.

    Article  CAS  PubMed  Google Scholar 

  82. Asadi MR, Rahmanpour D, Moslehian MS, Sabaie H, Hassani M, Ghafouri-Fard S, et al. Stress granules involved in formation, progression and metastasis of cancer: a scoping review. Front Cell Dev Biol. 2021;9:745394.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kobayashi H, Shoji K, Kiyokawa K, Negishi L, Tomari Y. VCP machinery mediates autophagic degradation of empty argonaute. Cell Rep. 2019;28:1144–53.e1144.

    Article  CAS  PubMed  Google Scholar 

  84. Michaeli S, Clavel M, Lechner E, Viotti C, Wu J, Dubois M, et al. The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. Proc Natl Acad Sci USA. 2019;116:22872–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kobayashi H, Shoji K, Kiyokawa K, Negishi L, Tomari Y. Iruka eliminates dysfunctional argonaute by selective ubiquitination of its empty state. Mol Cell. 2019;73:119–29.e115.

    Article  CAS  PubMed  Google Scholar 

  86. Lai HH, Li JN, Wang MY, Huang HY, Croce CM, Sun HL, et al. HIF-1alpha promotes autophagic proteolysis of Dicer and enhances tumor metastasis. J Clin Invest. 2018;128:625–43.

    Article  PubMed  Google Scholar 

  87. Tong X, Liu SY, Zou JZ, Zhao JJ, Zhu FF, Chai LX, et al. A small peptide inhibits siRNA amplification in plants by mediating autophagic degradation of SGS3/RDR6 bodies. EMBO J. 2021;40:e108050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Santovito D, Egea V, Bidzhekov K, Natarelli L, Mourao A, Blanchet X, et al. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci Transl Med. 2020;12:eaaz2294.

    Article  CAS  PubMed  Google Scholar 

  89. Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24:430–47.

  90. Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in Oncology. Cell. 2019;179:1033–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21:475–90.

    Article  CAS  PubMed  Google Scholar 

  92. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27:626–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin Z, Tang X, Wan J, Zhang X, Liu C, Liu T. Functions and mechanisms of circular RNAs in regulating stem cell differentiation. RNA Biol. 2021;18:2136–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu CY, Li TC, Wu YY, Yeh CH, Chiang W, Chuang CY, et al. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun. 2017;8:1149.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19:188–206.

    Article  CAS  PubMed  Google Scholar 

  96. Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer. 2020;6:319–36.

    Article  CAS  PubMed  Google Scholar 

  97. Karedath T, Ahmed I, Al Ameri W, Al-Dasim FM, Andrews SS, Samuel S, et al. Silencing of ANKRD12 circRNA induces molecular and functional changes associated with invasive phenotypes. BMC Cancer. 2019;19:565.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan Q, et al. The influence of circular RNAs on autophagy and disease progression. Autophagy. 2022;18:240–53.

    Article  CAS  PubMed  Google Scholar 

  99. Ma L, Wang Z, Xie M, Quan Y, Zhu W, Yang F, et al. Silencing of circRACGAP1 sensitizes gastric cancer cells to apatinib via modulating autophagy by targeting miR-3657 and ATG7. Cell Death Dis. 2020;11:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kong R. Circular RNA hsa_circ_0085131 is involved in cisplatin-resistance of non-small-cell lung cancer cells by regulating autophagy. Cell Biol Int. 2020;44:1945–56.

    Article  CAS  PubMed  Google Scholar 

  101. He Z, Cai K, Zeng Z, Lei S, Cao W, Li X. Autophagy-associated circRNA circATG7 facilitates autophagy and promotes pancreatic cancer progression. Cell Death Dis. 2022;13:233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang Z, Zhu H, Hu J. CircRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death Dis. 2021;12:219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 2018;37:5829–42.

    Article  CAS  PubMed  Google Scholar 

  104. Xu J, Xu J, Liu X, Jiang J. The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer. Cell Death Discov. 2022;8:287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253–61.

    Article  CAS  PubMed  Google Scholar 

  106. Tiessen I, Abildgaard MH, Lubas M, Gylling HM, Steinhauer C, Pietras EJ, et al. A high-throughput screen identifies the long non-coding RNA DRAIC as a regulator of autophagy. Oncogene. 2019;38:5127–41.

    Article  CAS  PubMed  Google Scholar 

  107. Sun Y, Ren D, Zhou Y, Shen J, Wu H, Jin X. Histone acetyltransferase 1 promotes gemcitabine resistance by regulating the PVT1/EZH2 complex in pancreatic cancer. Cell Death Dis. 2021;12:878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhou C, Yi C, Yi Y, Qin W, Yan Y, Dong X, et al. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/beta-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer. 2020;19:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang S, Yuan ZJ, Zhu YH, Chen X, Wang W. lncRNA PVT1 promotes cetuximab resistance of head and neck squamous cell carcinoma cells by inhibiting miR-124-3p. Head Neck. 2021;43:2712–23.

    Article  PubMed  Google Scholar 

  110. Wang J, Dong Z, Sheng Z, Cai Y. Hypoxia-induced PVT1 promotes lung cancer chemoresistance to cisplatin by autophagy via PVT1/miR-140-3p/ATG5 axis. Cell Death Discov. 2022;8:104.

    PubMed  PubMed Central  Google Scholar 

  111. Yi J, Wang L, Hu GS, Zhang YY, Du J, Ding JC, et al. CircPVT1 promotes ER-positive breast tumorigenesis and drug resistance by targeting ESR1 and MAVS. EMBO J. 2023;42:e112408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shi J, Guo C, Li Y, Ma J. The long noncoding RNA TINCR promotes self-renewal of human liver cancer stem cells through autophagy activation. Cell Death Dis. 2022;13:961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou Y, Shao Y, Hu W, Zhang J, Shi Y, Kong X, et al. A novel long noncoding RNA SP100-AS1 induces radioresistance of colorectal cancer via sponging miR-622 and stabilizing ATG3. Cell Death Differ. 2023;30:111–24.

    Article  CAS  PubMed  Google Scholar 

  114. Coe EA, Tan JY, Shapiro M, Louphrasitthiphol P, Bassett AR, Marques AC, et al. The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genet. 2019;15:e1008501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Frixa T, Sacconi A, Cioce M, Roscilli G, Ferrara FF, Aurisicchio L, et al. MicroRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration. Carcinogenesis. 2018;39:293–304.

    Article  CAS  PubMed  Google Scholar 

  116. Zhao C, Guo R, Guan F, Ma S, Li M, Wu J, et al. MicroRNA-128-3p enhances the chemosensitivity of temozolomide in glioblastoma by targeting c-Met and EMT. Sci Rep. 2020;10:9471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xu J, Song J, Xiao M, Wang C, Zhang Q, Yuan X, et al. RUNX1 (RUNX family transcription factor 1), a target of microRNA miR-128-3p, promotes temozolomide resistance in glioblastoma multiform by upregulating multidrug resistance-associated protein 1 (MRP1). Bioengineered. 2021;12:11768–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C, Oldebeken S, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol. 2016;17:677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hu X, Li F, He J, Yang J, Jiang Y, Jiang M, et al. LncRNA NEAT1 recruits SFPQ to regulate MITF splicing and control RPE cell proliferation. Invest Ophthalmol Vis Sci. 2021;62:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figures in this review were created using BioRender.com. We thank Steven E. Reid for critical reading and commenting of the manuscript. This work was supported by the Lundbeck Foundation (R272-2017-3872), the Novo Nordisk Foundation (NNF19OC0057772) and the Danish Cancer Society (R269-A15420 and R209-A13011).

Author information

Authors and Affiliations

Authors

Contributions

SPK, TMN, and LBF conceived the topic, discussed its contents, and wrote the manuscript.

Corresponding author

Correspondence to Lisa B. Frankel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolapalli, S.P., Nielsen, T.M. & Frankel, L.B. Post-transcriptional dynamics and RNA homeostasis in autophagy and cancer. Cell Death Differ (2023). https://doi.org/10.1038/s41418-023-01201-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-023-01201-5

Search

Quick links