Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SLC25A51 promotes tumor growth through sustaining mitochondria acetylation homeostasis and proline biogenesis

Abstract

Solute carrier family 25 member 51 (SLC25A51) was recently identified as the mammalian mitochondrial NAD+ transporter essential for mitochondria functions. However, the role of SLC25A51 in human disease, such as cancer, remains undefined. Here, we report that SLC25A51 is upregulated in multiple cancers, which promotes cancer cells proliferation. Loss of SLC25A51 elevates the mitochondrial proteins acetylation levels due to SIRT3 dysfunctions, leading to the impairment of P5CS enzymatic activity, which is the key enzyme in proline biogenesis, and the reduction in proline contents. Notably, we find fludarabine phosphate, an FDA-approved drug, is able to bind with and inhibit SLC25A51 functions, causing mitochondrial NAD+ decrease and proteins hyperacetylation, which could further synergize with aspirin to reinforce the anti-tumor efficacy. Our study reveals that SLC25A51 is an attractive anti-cancer target, and provides a novel drug combination of fludarabine phosphate with aspirin as a potential cancer therapy strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SLC25A51 expression is elevated in multiple cancers and negatively associates with patients prognosis.
Fig. 2: SLC25A51 knockdown suppresses cancer cells proliferation in vivo and in vitro.
Fig. 3: SLC25A51 deficiency causes SIRT3 dysfunction and mitochondrial proteins hyper-acetylation.
Fig. 4: Hyper-acetylation impairs P5CS enzymatic activity induced by SLC25A51 knockdown.
Fig. 5: Proline replenishment counteracts the inhibitory effects of SLC25A51 deficiency.
Fig. 6: Fludarabine phosphate is screened as a potential SLC25A51 inhibitor.
Fig. 7: Aspirin synergizes with fludarabine phosphate to inhibit tumor growth.

Similar content being viewed by others

Data availability

The RNA-seq data was submitted to NCBI SRA database (BioProject ID: PRJNA953609). The full and uncropped western blots were uploaded as the Supplemental Material. Other datasets used and/or analyzed during the study are available from the corresponding author on reasonable request.

References

  1. Berger F, Ramirez-Hernandez MH, Ziegler M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci. 2004;29:111–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 2005;19:1951–67.

    Article  CAS  PubMed  Google Scholar 

  3. North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004;5:224.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chini EN, Chini CCS, Espindola Netto JM, de Oliveira GC, van Schooten W. The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends Pharm Sci. 2018;39:424–36.

    Article  CAS  PubMed  Google Scholar 

  5. Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome-a key determinant of cancer cell biology. Nat Rev Cancer. 2012;12:741–52.

    Article  CAS  PubMed  Google Scholar 

  6. Magni G, Di Stefano M, Orsomando G, Raffaelli N, Ruggieri S. NAD(P) biosynthesis enzymes as potential targets for selective drug design. Curr Med Chem. 2009;16:1372–90.

    Article  CAS  PubMed  Google Scholar 

  7. Pramono AA, Rather GM, Herman H, Lestari K, Bertino JR. NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview. Biomolecules. 2020;10:358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chowdhry S, Zanca C, Rajkumar U, Koga T, Diao Y, Raviram R, et al. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature. 2019;569:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients. 2021;13:1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitchell SR, Larkin K, Grieselhuber NR, Lai TH, Cannon M, Orwick S, et al. Selective targeting of NAMPT by KPT-9274 in acute myeloid leukemia. Blood Adv. 2019;3:242–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130:1095–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luongo TS, Eller JM, Lu MJ, Niere M, Raith F, Perry C, et al. SLC25A51 is a mammalian mitochondrial NAD(+) transporter. Nature. 2020;588:174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kory N, Uit de Bos J, van der Rijt S, Jankovic N, Güra M, Arp N, et al. MCART1/SLC25A51 is required for mitochondrial NAD transport. Sci Adv. 2020;6:eabe5310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Girardi E, Agrimi G, Goldmann U, Fiume G, Lindinger S, Sedlyarov V, et al. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nature Commun. 2020;11:6145.

    Article  Google Scholar 

  15. Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 2022;23:329–49.

    Article  CAS  PubMed  Google Scholar 

  16. Guan KL, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci. 2011;36:108–16.

    Article  CAS  PubMed  Google Scholar 

  17. Ahn B-H, Kim H-S, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci. 2008;105:14447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alhazzazi TY, Kamarajan P, Verdin E, Kapila YL. SIRT3 and cancer: Tumor promoter or suppressor? Biochimica et Biophysica Acta. 2011;1816:80–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010;35:669–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Camacho-Pereira J, Tarrago MG, Chini CCS, Nin V, Escande C, Warner GM, et al. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. Cell Metab. 2016;23:1127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013;18:920–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 2011;12:534–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, et al. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circ Res. 2017;121:564–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lei MZ, Li XX, Zhang Y, Li JT, Zhang F, Wang YP, et al. Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduct Target Ther. 2020;5:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang F, Wang D, Li J, Su Y, Liu S, Lei QY, et al. Deacetylation of MTHFD2 by SIRT4 senses stress signal to inhibit cancer cell growth by remodeling folate metabolism. J Mol Cell Biol. 2022;14:1–12.

    Article  Google Scholar 

  26. Li Y, Bie J, Song C, Liu M, Luo J. PYCR, a key enzyme in proline metabolism, functions in tumorigenesis. Amino Acids. 2021;53:1841–50.

    Article  CAS  PubMed  Google Scholar 

  27. Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, et al. Human Delta1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids. 2008;35:665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen S, Yang X, Yu M, Wang Z, Liu B, Liu M, et al. SIRT3 regulates cancer cell proliferation through deacetylation of PYCR1 in proline metabolism. Neoplasia. 2019;21:665–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhong J, Guo CJ, Zhou X, Chang CC, Yin B, Zhang T, et al. Structural basis of dynamic P5CS filaments. Elife 2022;11:e76107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murphy JM, Murch SJ, Ball RO. Proline is synthesized from glutamate during intragastric infusion but not during intravenous infusion in neonatal piglets. J Nutr. 1996;126:878–86.

    Article  CAS  PubMed  Google Scholar 

  31. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12:599–620.

    Article  CAS  PubMed  Google Scholar 

  32. Krishnan N, Dickman MB, Becker DF. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med. 2008;44:671–81.

    Article  CAS  PubMed  Google Scholar 

  33. Westbrook RL, Bridges E, Roberts J, Escribano-Gonzalez C, Eales KL, Vettore LA, et al. Proline synthesis through PYCR1 is required to support cancer cell proliferation and survival in oxygen-limiting conditions. Cell Rep. 2022;38:110320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding Z, Ericksen RE, Escande-Beillard N, Lee QY, Loh A, Denil S, et al. Metabolic pathway analyses identify proline biosynthesis pathway as a promoter of liver tumorigenesis. J Hepatol. 2020;72:725–35.

    Article  CAS  PubMed  Google Scholar 

  35. Alaqbi SS, Burke L, Guterman I, Green C, West K, Palacios-Gallego R, et al. Increased mitochondrial proline metabolism sustains proliferation and survival of colorectal cancer cells. PLoS One. 2022;17:e0262364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4:257–62.

    Article  CAS  PubMed  Google Scholar 

  37. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.

    Article  CAS  PubMed  Google Scholar 

  38. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–44.

    Article  CAS  PubMed  Google Scholar 

  39. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chun HG, Leyland-Jones B, Cheson BD. Fludarabine phosphate: a synthetic purine antimetabolite with significant activity against lymphoid malignancies. J Clin Oncol. 1991;9:175–88.

    Article  CAS  PubMed  Google Scholar 

  41. Molina DM, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–7.

    Article  CAS  Google Scholar 

  42. Lecomte M, Laneuville O, Ji C, DeWitt DL, Smith WL. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J Biol Chem. 1994;269:13207–15.

    Article  CAS  PubMed  Google Scholar 

  43. Marimuthu S, Chivukula RS, Alfonso LF, Moridani M, Hagen FK, Bhat GJ. Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: Identification of novel targets. Int J Oncol. 2011;39:1273–83.

    CAS  PubMed  Google Scholar 

  44. Moreira JD, Hamraz M, Abolhassani M, Bigan E, Peres S, Pauleve L, et al. The Redox Status of Cancer Cells Supports Mechanisms behind the Warburg Effect. Metabolites 2016;6:33.

    Article  PubMed  Google Scholar 

  45. Demarest TG, Babbar M, Okur MN, Dan X, Croteau DL, Fakouri NB, et al. NAD+ metabolism in aging and cancer. Annu Rev Cancer Biol. 2019;3:105–30.

    Article  Google Scholar 

  46. Grever M, Leiby J, Kraut E, Metz E, Neidhart J, Balcerzak S, et al. A comprehensive phase I and II clinical investigation of fludarabine phosphate. Semin Oncol. 1990;17:39–48.

    CAS  PubMed  Google Scholar 

  47. Cho H, Cho Y-Y, Shim MS, Lee JY, Lee HS, Kang HC. Mitochondria-targeted drug delivery in cancers. Biochimica et Biophysica Acta. 2020;1866:165808.

    Article  CAS  PubMed  Google Scholar 

  48. Zuo Z, He L, Duan X, Peng Z, Han J. Glycyrrhizic acid exhibits strong anticancer activity in colorectal cancer cells via SIRT3 inhibition. Bioengineered. 2022;13:2720–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun S, Shi J, Wang X, Huang C, Huang Y, Xu J, et al. Atractylon inhibits the tumorigenesis of glioblastoma through SIRT3 signaling. Am J Cancer Res. 2022;12:2310–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Li M, Chiang Y-L, Lyssiotis CA, Teater MR, Hong JY, Shen H, et al. Non-oncogene Addiction to SIRT3 Plays a Critical Role in Lymphomagenesis. Cancer Cell. 2019;35:916–31.e919.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 2012;9:259–67.

    Article  CAS  PubMed  Google Scholar 

  52. Li W, Sauve AA. NAD+ content and its role in mitochondria. Methods Mol. Biol. 2015;1241:39–48.

    Article  CAS  PubMed  Google Scholar 

  53. Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25:27–42.

    Article  CAS  PubMed  Google Scholar 

  54. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2014;511:483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peng Y, Zhang X, Zhang T, Grace PM, Li H, Wang Y, et al. Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain. Brain Behav Immun. 2019;82:432–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zhanlong Shen (Peking University People’s Hospital), Xinshan Ye (Peking university), Xiaoyan Qiu (Peking University) and Jiadong Wang (Peking University) for providing us cell lines. We thank Yaxin Lou (Peking University) for the assistance of mass spectrometry analysis; Lihua An (Peking university) for the analysis of amino acids contents; Liping Liu (Shanghai Institute of Materia Medica) for the assistance of molecular docking; Qian Wang (Peking University) for the assistance of MST assay. This work was supported by grants from National Natural Science Foundation of China (82172959, 81874147 and 81671389).

Author information

Authors and Affiliations

Authors

Contributions

YL, JB and JL designed the research. YL, JB and CS performed most of the experiments. TZ and ML assisted with the cell culture. LZ and CY collected the tumor samples.

Corresponding author

Correspondence to Jianyuan Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

This study was approved by the Ethics Committee of the Peking University Health Science Center.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Bie, J., Zhao, L. et al. SLC25A51 promotes tumor growth through sustaining mitochondria acetylation homeostasis and proline biogenesis. Cell Death Differ 30, 1916–1930 (2023). https://doi.org/10.1038/s41418-023-01185-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01185-2

This article is cited by

Search

Quick links