Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AF9 targets acetyl-modified STAT6 to diminish purine metabolism and accelerate cell apoptosis during metastasis

Abstract

Cell migration and invasion are two important steps for tumour metastasis, and involved the behaviors including metabolism remodeling and anti-apoptosis. However, it’s still elusive that cancer cells how to antagonize apoptosis during tumour metastasis. In this study, we observed that super elongation complex (SEC) subunit AF9 depletion exacerbated cell migration and invasion but reduced the apoptosis during invasive migration. Mechanically, AF9 targeted acetyl (Ac)-STAT6 at lysine (K) 284 and blocked STAT6 transactivation on the promoter of such genes involved in regulating purine metabolism and metastasis, in turn induced apoptosis of suspended cells. Of note, AcSTAT6-K284 was not induced by IL4 signaling but decreased by limited nutrition which triggered SIRT6 to remove acetyl group at STAT6-K284. The functional experiments proved that AcSTAT6-K284 attenuated cell migration and invasion depending on AF9 expression level. Animal metastatic study further confirmed the AF9/AcSTAT6-K284 axis existed and blocked kidney renal clear cell carcinoma (KIRC) metastasis. In clinical, both AF9 expression and AcSTAT6-K284 were decreased accompanied by the advanced tumour grade and positively correlated with KIRC patients’ survival. Conclusively, we explored an inhibitory axis which not only suppressed tumour metastasis but also could be utilized for drug development to hamper KIRC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low expression of AF9 displays a worse prognosis and sustains more aggressive cell migration and invasion.
Fig. 2: AF9 associates with STAT6 and regulates its transactivation during cell migration and invasion.
Fig. 3: Acetyl-modified STAT6 at lysine 284 recruits AF9.
Fig. 4: SIRT6 deacetylates STAT6 acetylation in vitro and in vivo upon limited nutrition stress.
Fig. 5: AF9/AcSTAT6-K284 axis attenuates the expression of genes involved in purine metabolism and metastasis.
Fig. 6: AF9 level and the state of STAT6 acetylation at K284 determine whether STAT6 activates purine biosynthesis to promote anti-apoptosis during invasion.
Fig. 7: AF9/AcSTAT6-K284 axis suppressed metastasis in vivo and prolongs the lifespan of mice and human patients with KIRC.

Similar content being viewed by others

Data availability

We provided data accession codes for RNA-sequencing original data in the NCBI BioProject as follows: PRJNA874431. Original western blot was uploaded as Supplementary Material.

References

  1. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Disco. 2022;12:31–46.

    Article  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  4. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527:186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019;178:330–45.e22.

    Article  CAS  PubMed  Google Scholar 

  7. Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. 2021;21:162–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nabi S, Kessler ER, Bernard B, Flaig TW, Lam ET. Renal cell carcinoma: a review of biology and pathophysiology. F1000Res. 2018;7:307.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chowdhury N, Drake CG. Kidney cancer: an overview of current therapeutic approaches. Urol Clin North Am. 2020;47:419–31.

    Article  PubMed  Google Scholar 

  10. van de Merbel AF, van der Horst G, van der Pluijm G. Patient-derived tumour models for personalized therapeutics in urological cancers. Nat Rev Urol. 2021;18:33–45.

    Article  PubMed  Google Scholar 

  11. Sanchez-Gastaldo A, Kempf E, Gonzalez Del Alba A, Duran I. Systemic treatment of renal cell cancer: a comprehensive review. Cancer Treat Rev. 2017;60:77–89.

    Article  CAS  PubMed  Google Scholar 

  12. Tian X, Yu H, Li D, Jin G, Dai S, Gong P, et al. The miR-5694/AF9/Snail axis provides metastatic advantages and a therapeutic target in basal-like breast cancer. Mol Ther. 2021;29:1239–57.

    Article  CAS  PubMed  Google Scholar 

  13. Yu H, He J, Liu W, Feng S, Gao L, Xu Y, et al. The transcriptional coactivator, ALL1-fused gene from chromosome 9, simultaneously sustains hypoxia tolerance and metabolic advantages in liver cancer. Hepatology. 2021;74:1952–70.

    Article  CAS  PubMed  Google Scholar 

  14. Le Masson I, Yu DY, Jensen K, Chevalier A, Courbeyrette R, Boulard Y, et al. Yaf9, a novel NuA4 histone acetyltransferase subunit, is required for the cellular response to spindle stress in yeast. Mol Cell Biol. 2003;23:6086–102.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luo Z, Lin C, Shilatifard A. The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol. 2012;13:543–7.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Wen H, Xi Y, Tanaka K, Wang H, Peng D, et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell. 2014;159:558–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang CG, Ye YJ, Yuan J, Liu FF, Zhang H, Wang S. EZH2 and STAT6 expression profiles are correlated with colorectal cancer stage and prognosis. World J Gastroenterol. 2010;16:2421–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ostrand-Rosenberg S, Grusby MJ, Clements VK. Cutting edge: STAT6-deficient mice have enhanced tumour immunity to primary and metastatic mammary carcinoma. J Immunol. 2000;165:6015–9.

    Article  CAS  PubMed  Google Scholar 

  19. Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, et al. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol. 2020;60:41–56.

    Article  CAS  PubMed  Google Scholar 

  20. Li BH, Yang XZ, Li PD, Yuan Q, Liu XH, Yuan J, et al. IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells. Biochem Biophys Res Commun. 2008;369:554–60.

    Article  CAS  PubMed  Google Scholar 

  21. Webb DJ, Zhang H, Horwitz AF. Cell migration: an overview. Methods Mol Biol. 2005;294:3–11.

    PubMed  Google Scholar 

  22. Yamada KM, Sixt M. Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol. 2019;20:738–52.

    Article  CAS  PubMed  Google Scholar 

  23. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Disco. 2014;13:673–91.

    Article  CAS  Google Scholar 

  24. Neumann H, Peak-Chew SY, Chin JW. Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat Chem Biol. 2008;4:232–4.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng Y, Liu Q, Shen H, Yang G. To increase the incorporation efficiency of genetically encoding N(epsilon)-acetyllysine in recombinant protein. Protein Expr Purif. 2018;145:59–63.

    Article  CAS  PubMed  Google Scholar 

  26. Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. Structure and biochemical functions of SIRT6. J Biol Chem. 2011;286:14575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu X, Chen J, Sasmono RT, Hsi ED, Sarosiek KA, Tiganis T, et al. T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol Cell Biol. 2007;27:2166–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer. 2021;21:767–85.

    Article  CAS  PubMed  Google Scholar 

  29. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19:121–35.

    Article  CAS  PubMed  Google Scholar 

  30. Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019;59:92–111.

    Article  CAS  PubMed  Google Scholar 

  31. Wang TH, Wang HS, Soong YK. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer. 2000;88:2619–28.

    Article  CAS  PubMed  Google Scholar 

  32. Guo M, Liu Z, Si J, Zhang J, Zhao J, Guo Z, et al. Cediranib induces apoptosis, G1 phase cell cycle arrest, and autophagy in non-small-cell lung cancer cell A549 in vitro. Biomed Res Int. 2021;2021:5582648.

    PubMed  PubMed Central  Google Scholar 

  33. Tasselli L, Zheng W, Chua KF. SIRT6: novel mechanisms and links to aging and disease. Trends Endocrinol Metab. 2017;28:168–85.

    Article  CAS  PubMed  Google Scholar 

  34. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124:315–29.

    Article  CAS  PubMed  Google Scholar 

  35. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410:227–30.

    Article  CAS  PubMed  Google Scholar 

  36. Fiorentino F, Carafa V, Favale G, Altucci L, Mai A, Rotili D. The two-faced role of SIRT6 in cancer. Cancers (Basel). 2021;13:1156.

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Jimenez C, Goding CR. Starvation and pseudo-starvation as drivers of cancer metastasis through translation reprogramming. Cell Metab. 2019;29:254–67.

    Article  CAS  PubMed  Google Scholar 

  38. Rapp UR, Korn C, Ceteci F, Karreman C, Luetkenhaus K, Serafin V, et al. MYC is a metastasis gene for non-small-cell lung cancer. PLoS One. 2009;4:e6029.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pezzuto A, Carico E. Role of HIF-1 in cancer progression: novel insights. a review. Curr Mol Med. 2018;18:343–51.

    Article  CAS  PubMed  Google Scholar 

  40. Karpathiou G, Papoudou-Bai A, Ferrand E, Dumollard JM, Peoc’h M. STAT6: a review of a signaling pathway implicated in various diseases with a special emphasis in its usefulness in pathology. Pathol Res Pr. 2021;223:153477.

    Article  CAS  Google Scholar 

  41. Pfeifer CR, Xia Y, Zhu K, Liu D, Irianto J, Garcia VMM, et al. Constricted migration increases DNA damage and independently represses cell cycle. Mol Biol Cell. 2018;29:1948–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pfeifer CR, Vashisth M, Xia Y, Discher DE. Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: a brief review. Essays Biochem. 2019;63:569–77.

    Article  CAS  PubMed  Google Scholar 

  43. Hunakova L, Bies J, Sedlak J, Duraj J, Jakubikova J, Takacsova X, et al. Differential sensitivity of ovarian carcinoma cell lines to apoptosis induced by the IMPDH inhibitor benzamide riboside. Neoplasma. 2000;47:274–9.

    CAS  PubMed  Google Scholar 

  44. Arpaia E, Benveniste P, Di Cristofano A, Gu Y, Dalal I, Kelly S, et al. Mitochondrial basis for immune deficiency. Evidence from purine nucleoside phosphorylase-deficient mice. J Exp Med. 2000;191:2197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, Edwards M, et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science. 1996;273:1109–11.

    Article  CAS  PubMed  Google Scholar 

  46. Bahreyni A, Khazaei M, Rajabian M, Ryzhikov M, Avan A, Hassanian SM. Therapeutic potency of pharmacological adenosine receptor agonist/antagonist in angiogenesis, current status and perspectives. J Pharm Pharm. 2018;70:191–6.

    Article  CAS  Google Scholar 

  47. Attar R, Panah T, Romero MA, Yulaevna IM, Gazouli M, Berardi R, et al. Overview of the signaling pathways involved in metastasis: an intriguing story-tale of the metastatic journey of ovarian cancer cells. Cell Mol Biol (Noisy-le-Gd). 2021;67:212–23.

    Article  Google Scholar 

  48. Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat Rev Cancer. 2022;22:157–73.

    Article  CAS  PubMed  Google Scholar 

  49. Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc 2009;2009:pdb prot5279.

    Article  PubMed  Google Scholar 

  50. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20:576–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22:725–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the CAS Shanghai Institute of Nutrition and Health (SINH) Molecular and metabolism core facility for the metabolite determination and protein synthesis service. This study was supported in part by NSFC grants No. 92053113 and 81570607, National Natural Science Foundation for Young Scholars of China (No. 81902566 and 82103511), and Shanghai Jiaotong University Medical-Engineering Cross Research Fund (No. YG2019QNA53).

Author information

Authors and Affiliations

Authors

Contributions

SJ, ST, DY and YH designed, performed, and analyzed experiments, prepared the figures. CL provided technical help. WXJ and FN conceived this study, wrote the manuscript and YH rewrote the revised manuscript. WXJ and WX designed and analyzed experiments and wrote the manuscript.

Corresponding authors

Correspondence to Hua Yu, Ninghan Feng or Xiongjun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All KIRC samples were conducted in accordance with the requirements of Shanghai First People’s Hospital, Shanghai Jiaotong University. The use of clinical samples was approved by the institutional review board of the hospital with the ethical number 2021KSQ367.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Shi, T., Chen, L. et al. AF9 targets acetyl-modified STAT6 to diminish purine metabolism and accelerate cell apoptosis during metastasis. Cell Death Differ 30, 1695–1709 (2023). https://doi.org/10.1038/s41418-023-01172-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01172-7

This article is cited by

Search

Quick links