Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The embryonic patterning gene Dbx1 governs the survival of the auditory midbrain via Tcf7l2-Ap2δ transcriptional cascade

Abstract

At the top of the midbrain is the inferior colliculus (IC), which functions as the major hub for processing auditory information. Despite the functional significance of neurons in the IC, our understanding of their formation is limited. In this study, we identify the embryonic patterning gene Dbx1 as a key molecular player that governs genetic programs for IC survival. We find that Dbx1 plays a critical role in preventing apoptotic cell death in postnatal IC by transcriptionally repressing c-Jun and pro-apoptotic BH3 only factors. Furthermore, by employing combined approaches, we uncover that Tcf7l2 functions downstream of Dbx1. Loss of Tcf7l2 function causes IC phenotypes with striking similarity to those of Dbx1 mutant mice, which include defective embryonic maturation and postnatal deletion of the IC. Finally, we demonstrate that the Dbx1-Tcf7l2 cascade functions upstream of Ap-2δ, which is essential for IC development and survival. Together, these results unravel a novel molecular mechanism for IC maintenance, which is indispensable for normal brain development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differential expression profiling identifies Dbx1 target genes in the IC.
Fig. 2: Loss of Dbx1 leads to increased levels of c-Jun and BH3 only factors, and to cell death in the IC.
Fig. 3: Absence of the inferior colliculus in Dbx1cko mutant mice.
Fig. 4: Tcf7l2 acts downstream of Dbx1 to orchestrate a genetic program of morphological maturation in the developing IC.
Fig. 5: Tcf7l2 inactivation leads to apoptosis and lack of the inferior colliculus.
Fig. 6: Ap-2δ is co-regulated by Dbx1 and Tcf7l2 in the IC.
Fig. 7: Restored expression of Tcf7l2 and/or Ap-2δ attenuates apoptosis in Dbx1-deficient IC cells.

Similar content being viewed by others

Data availability

RNA-seq raw FASTQ files of wildtype and Dbx1 mutants have been deposited into the NCBI Sequence Read Archive under bioproject ID PRJNA793387. RNA-seq raw FASTQ files of wildtype and Tcf7l2 mutants have been deposited into the NCBI Sequence Read Archive under bioproject ID PRJNA801436.

References

  1. Winer JA, Schreiner CE. The Inferior Colliculus. New York, NY: Springer New York; 2005. https://doi.org/10.1007/b138578.

  2. Oliver DL, Morest DK. The central nucleus of the inferior colliculus in the cat. J Comp Neurol. 1984;222:237–64.

    Article  CAS  PubMed  Google Scholar 

  3. Winer JA, Larue DT, Diehl JJ, Hefti BJ. Auditory cortical projections to the cat inferior colliculus. J Comp Neurol. 1998;400:147–74.

    Article  CAS  PubMed  Google Scholar 

  4. Peruzzi D, Bartlett E, Smith PH, Oliver DL. A Monosynaptic GABAergic Input from the Inferior Colliculus to the Medial Geniculate Body in Rat. J Neurosci. 1997;17:3766–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Winer JA, Saint Marie RL, Larue DT, Oliver DL. GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci. 1996;93:8005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakatani T, Minaki Y, Kumai M, Ono Y. Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon. Development. 2007;134:2783–93.

    Article  CAS  PubMed  Google Scholar 

  7. Kala K, Haugas M, Lilleväli K, Guimera J, Wurst W, Salminen M, et al. Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development. 2009;136:253–62.

    Article  CAS  PubMed  Google Scholar 

  8. Joyner AL, Liu A, Millet S. Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol. 2000;12:736–41.

    Article  CAS  PubMed  Google Scholar 

  9. Wurst W, Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci. 2001;2:99–108.

    Article  CAS  PubMed  Google Scholar 

  10. Chi CL, Martinez S, Wurst W, Martin GR. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development. 2003;130:2633–44.

    Article  CAS  PubMed  Google Scholar 

  11. Shamim H, Mahmood R, Logan C, Doherty P, Lumsden A, Mason I. Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development. 1999;126:945–59.

    Article  CAS  PubMed  Google Scholar 

  12. Basson MA, Echevarria D, Ahn CP, Sudarov A, Joyner AL, Mason IJ, et al. Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development. 2008;135:889–98.

    Article  CAS  PubMed  Google Scholar 

  13. Dee A, Li K, Heng X, Guo Q, Li JYH. Regulation of self-renewing neural progenitors by FGF/ERK signaling controls formation of the inferior colliculus. Development. 2016;143:3661–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sgaier SK, Lao Z, Villanueva MP, Berenshteyn F, Stephen D, Turnbull RK, et al. Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins. Development. 2007;134:2325–35.

    Article  CAS  PubMed  Google Scholar 

  15. Trokovic R. FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO J. 2003;22:1811–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development. 2000;127:1833–43.

    Article  CAS  PubMed  Google Scholar 

  17. Sato T, Joyner AL. The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures. Development. 2009;136:3617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell. 1990;62:1073–85.

    Article  CAS  PubMed  Google Scholar 

  19. Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346:847–50.

    Article  CAS  PubMed  Google Scholar 

  20. Wurst W, Auerbach AB, Joyner AL. Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development. 1994;120:2065–75.

    Article  CAS  PubMed  Google Scholar 

  21. Serbedzija GN, Dickinson M, McMahon AP. Cell death in the CNS of the Wnt-1 mutant mouse. J Neurobiol. 1996;31:275–82.

    Article  CAS  PubMed  Google Scholar 

  22. Urbánek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell. 1994;79:901–12.

    Article  PubMed  Google Scholar 

  23. Matsunaga E, Araki I, Nakamura H. Role of Pax3/7 in the tectum regionalization. Development. 2001;128:4069–77.

    Article  CAS  PubMed  Google Scholar 

  24. Agoston Z, Schulte D. Meis2 competes with the Groucho co-repressor Tle4 for binding to Otx2 and specifies tectal fate without induction of a secondary midbrain-hindbrain boundary organizer. Development. 2009;136:3311–22.

    Article  CAS  PubMed  Google Scholar 

  25. Broccoli V, Boncinelli E, Wurst W. The caudal limit of Otx2 expression positions the isthmic organizer. Nature. 1999;401:164–8.

    Article  CAS  PubMed  Google Scholar 

  26. Millet S, Campbell K, Epstein DJ, Losos K, Harris E, Joyner AL. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature. 1999;401:161–4.

    Article  CAS  PubMed  Google Scholar 

  27. Puelles E, Acampora D, Lacroix E, Signore M, Annino A, Tuorto F, et al. Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nat Neurosci. 2003;6:453–60.

    Article  CAS  PubMed  Google Scholar 

  28. Di Giovannantonio LG, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, et al. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development. 2014;141:377–88.

    Article  PubMed  Google Scholar 

  29. Cowan WM, Martin AH, Wenger E. Mitotic patterns in the optic tectum of the chick during normal development and after early removal of the optic vesicle. J Exp Zool. 1968;169:71–92.

    Article  CAS  PubMed  Google Scholar 

  30. Altman J, Bayer SA. Time of origin of neurons of the rat inferior colliculus and the relations between cytogenesis and tonotopic order in the auditory pathway. Exp Brain Res. 1981;42–42:411–23.

    Google Scholar 

  31. Altman J, Bayer SA. Time of origin of neurons of the rat superior colliculus in relation to other components of the visual and visuomotor pathways. Exp Brain Res. 1981;42:424–34.

    CAS  PubMed  Google Scholar 

  32. Edwards MA, Caviness VS, Schneider GE. Development of cell and fiber lamination in the mouse superior colliculus. J Comp Neurol. 1986;248:395–409.

    Article  CAS  PubMed  Google Scholar 

  33. Miyoshi G, Bessho Y, Yamada S, Kageyama R. Identification of a novel basic helix-loop-helix gene, Heslike, and its role in GABAergic neurogenesis. J Neurosci. 2004;24:3672–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guimera J, Weisenhorn DV, Wurst W. Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. Development. 2006;133:3847–57.

    Article  CAS  PubMed  Google Scholar 

  35. Peltopuro P, Kala K, Partanen J. Distinct requirements for Ascl1 in subpopulations of midbrain GABAergic neurons. Dev Biol. 2010;343:63–70.

    Article  CAS  PubMed  Google Scholar 

  36. Achim K, Peltopuro P, Lahti L, Tsai HH, Zachariah A, Astrand M, et al. The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol Open. 2013;2:990–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wende C-Z, Zoubaa S, Blak A, Echevarria D, Martinez S, Guillemot F, et al. Hairy/Enhancer-of-Split MEGANE and Proneural MASH1 Factors Cooperate Synergistically in Midbrain GABAergic Neurogenesis. PLoS ONE. 2015;10:e0127681.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shoji H, Ito T, Wakamatsu Y, Hayasaka N, Ohsaki K, Oyanagi M, et al. Regionalized expression of the Dbx family homeobox genes in the embryonic CNS of the mouse. Mech Dev. 1996;56:25–39.

    Article  CAS  PubMed  Google Scholar 

  39. Pierani A, Moran-Rivard L, Sunshine MJ, Littman DR, Goulding M, Jessell TM. Control of interneuron fate in the developing spinal cord by the progenitor homeodomain protein Dbx1. Neuron. 2001;29:367–84.

    Article  CAS  PubMed  Google Scholar 

  40. Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M. Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron. 2004;42:375–86.

    Article  CAS  PubMed  Google Scholar 

  41. Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O. Dual-mode operation of neuronal networks involved in left-right alternation. Nature. 2013;500:85–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bouvier J, Thoby-Brisson M, Renier N, Dubreuil V, Ericson J, Champagnat J, et al. Hindbrain interneurons and axon guidance signaling critical for breathing. Nat Neurosci. 2010;13:1066–74.

    Article  CAS  PubMed  Google Scholar 

  43. Gray PA, Hayes JA, Ling GY, Llona I, Tupal S, Picardo MC, et al. Developmental origin of preBötzinger complex respiratory neurons. J Neurosci. 2010;30:14883–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sokolowski K, Esumi S, Hirata T, Kamal Y, Tran T, Lam A, et al. Specification of select hypothalamic circuits and innate behaviors by the embryonic patterning gene dbx1. Neuron. 2015;86:403–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inamata Y, Shirasaki R. Dbx1 triggers crucial molecular programs required for midline crossing by midbrain commissural axons. Development. 2014;141:1260–71.

    Article  CAS  PubMed  Google Scholar 

  46. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3.

    Article  CAS  PubMed  Google Scholar 

  47. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet. 1998;19:379–83.

    Article  CAS  PubMed  Google Scholar 

  48. Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise. Histol Histopathol. 2006;21:103–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ah Cho E, Dressler GR. TCF-4 binds β-catenin and is expressed in distinct regions of the embryonic brain and limbs. Mech Dev. 1998;77:9–18.

    Article  CAS  Google Scholar 

  50. Brinkmeier ML, Potok MA, Davis SW, Camper SA. TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Dev Biol. 2007;311:396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci. 2009;12:829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hammond E, Lang J, Maeda Y, Pleasure D, Angus-Hill M, Xu J, et al. The Wnt effector transcription factor 7-like 2 positively regulates oligodendrocyte differentiation in a manner independent of Wnt/β-catenin signaling. J Neurosci. 2015;35:5007–22.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhao C, Deng Y, Liu L, Yu K, Zhang L, Wang H, et al. Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation. Nat Commun. 2016;7:10883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee M, Yoon J, Song H, Lee B, Lam DT, Yoon J, et al. Tcf7l2 plays crucial roles in forebrain development through regulation of thalamic and habenular neuron identity and connectivity. Dev Biol. 2017;424:62–76.

    Article  CAS  PubMed  Google Scholar 

  55. Tran H-N, Park W, Seong S, Jeong JE, Nguyen QH, Yoon J, et al. Tcf7l2 transcription factor is required for the maintenance, but not the initial specification, of the neurotransmitter identity in the caudal thalamus. Dev Dyn. 2020;249:646–55.

    Article  CAS  PubMed  Google Scholar 

  56. Lipiec MA, Bem J, Koziński K, Chakraborty C, Urban-Ciećko J, Zajkowski T, et al. TCF7L2 regulates postmitotic differentiation programmes and excitability patterns in the thalamus. Development. 2020;147:dev190181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hesse K, Vaupel K, Kurt S, Buettner R, Kirfel J, Moser M. AP-2δ is a crucial transcriptional regulator of the posterior midbrain. PLoS ONE. 2011;6:e23483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lakso M, Pichel JG, Gorman JR, Sauer B, Okamoto Y, Lee E, et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci USA. 1996;93:5860–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matsunaga Y, Noda M, Murakawa H, Hayashi K, Nagasaka A, Inoue S, et al. Reelin transiently promotes N-cadherin-dependent neuronal adhesion during mouse cortical development. Proc Natl Acad Sci USA. 2017;114:2048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chao CC-K, Chang P-Y, Lu HH-P. Human Gas7 isoforms homologous to mouse transcripts differentially induce neurite outgrowth. J Neurosci Res. 2005;81:153–62.

    Article  CAS  PubMed  Google Scholar 

  61. Garrido-García A, de Andrés R, Jiménez-Pompa A, Soriano P, Sanz-Fuentes D, Martínez-Blanco E, et al. Neurogranin Expression Is Regulated by Synaptic Activity and Promotes Synaptogenesis in Cultured Hippocampal Neurons. Mol Neurobiol. 2019;56:7321–37.

    Article  PubMed  Google Scholar 

  62. Panza P, Sitko AA, Maischein H-M, Koch I, Flötenmeyer M, Wright GJ, et al. The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm. Neural Dev. 2015;10:23.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xiao T, Baier H. Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet. Nat Neurosci. 2007;10:1529–37.

    Article  CAS  PubMed  Google Scholar 

  64. Cooper SR, Emond MR, Duy PQ, Liebau BG, Wolman MA, Jontes JD. Protocadherins control the modular assembly of neuronal columns in the zebrafish optic tectum. J Cell Biol. 2015;211:807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Putcha GV, Moulder KL, Golden JP, Bouillet P, Adams JA, Strasser A, et al. Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron. 2001;29:615–28.

    Article  CAS  PubMed  Google Scholar 

  66. Coultas L, Terzano S, Thomas T, Voss A, Reid K, Stanley EG, et al. Hrk/DP5 contributes to the apoptosis of select neuronal populations but is dispensable for haematopoietic cell apoptosis. J Cell Sci. 2007;120:2044–52.

    Article  CAS  PubMed  Google Scholar 

  67. Ma C, Ying C, Yuan Z, Song B, Li D, Liu Y, et al. dp5/HRK is a c-Jun target gene and required for apoptosis induced by potassium deprivation in cerebellar granule neurons. J Biol Chem. 2007;282:30901–9.

    Article  CAS  PubMed  Google Scholar 

  68. Whitfield J, Neame SJ, Paquet L, Bernard O, Ham J. Dominant-Negative c-Jun Promotes Neuronal Survival by Reducing BIM Expression and Inhibiting Mitochondrial Cytochrome c Release. Neuron. 2001;29:629–43.

    Article  CAS  PubMed  Google Scholar 

  69. Lee B, Song H, Rizzoti K, Son Y, Yoon J, Baek K, et al. Genomic code for Sox2 binding uncovers its regulatory role in Six3 activation in the forebrain. Dev Biol. 2013;381:491–501.

    Article  CAS  PubMed  Google Scholar 

  70. Angus-Hill ML, Elbert KM, Hidalgo J, Capecchi MR. T-cell factor 4 functions as a tumor suppressor whose disruption modulates colon cell proliferation and tumorigenesis. Proc Natl Acad Sci. 2011;108:4914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell PJ. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature. 1996;381:235–8.

    Article  CAS  PubMed  Google Scholar 

  72. Moser M, Pscherer A, Roth C, Becker J, Mücher G, Zerres K, et al. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2beta. Genes Dev. 1997;11:1938–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Malmierca MS, Blackstad TW, Osen KK, Karagülle T, Molowny RL. The central nucleus of the inferior colliculus in rat: A Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol. 1993;333:1–27.

    Article  CAS  PubMed  Google Scholar 

  74. Meininger V, Pol D, Derer P. The inferior colliculus of the mouse. A Nissl and Golgi study. Neuroscience. 1986;17:1159–79.

    Article  CAS  PubMed  Google Scholar 

  75. Chen C, Cheng M, Ito T, Song S. Neuronal Organization in the Inferior Colliculus Revisited with Cell-Type-Dependent Monosynaptic Tracing. J Neurosci. 2018;38:3318–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goyer D, Silveira MA, George AP, Beebe NL, Edelbrock RM, Malinski PT, et al. A novel class of inferior colliculus principal neurons labeled in vasoactive intestinal peptide-Cre mice. Elife. 2019;8:e43770.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li H, Radford JC, Ragusa MJ, Shea KL, McKercher SR, Zaremba JD, et al. Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc Natl Acad Sci USA. 2008;105:9397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev. 2018;98:813–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Imaizumi K. Critical Role for DP5/Harakiri, a Bcl-2 Homology Domain 3-Only Bcl-2 Family Member, in Axotomy-Induced Neuronal Cell Death. J Neurosci. 2004;24:3721–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ellies DL, Church V, Francis-West P, Lumsden A. The WNT antagonist cSFRP2 modulates programmed cell death in the developing hindbrain. Development. 2000;127:5285–95.

    Article  CAS  PubMed  Google Scholar 

  81. Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W. Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol. 2000;148:567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang L, Su Z, Wang Z, Li Z, Shang Z, Du H, et al. Transcriptional profiling reveals the transcription factor networks regulating the survival of striatal neurons. Cell Death Dis. 2021;12:262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  CAS  PubMed  Google Scholar 

  84. Challis RC, Ravindra Kumar S, Chan KY, Challis C, Beadle K, Jang MJ, et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat Protoc. 2019;14:379–414.

    Article  CAS  PubMed  Google Scholar 

  85. Lee YJ, Swencki B, Shoichet S, Shivdasani RA. A possible role for the high mobility group box transcription factor Tcf-4 in vertebrate gut epithelial cell differentiation. J Biol Chem. 1999;274:1566–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea Ministry of Science and ICT (No. 2019R1F1A1042941 and No. 2022R1F1A1064555).

Author information

Authors and Affiliations

Authors

Contributions

Conceived project: YJ. Designed experiments: HT, YJ. Performed experiments: HT, QN, JJ, DL. Analyzed data: HT, QN, JJ, DL, YJ. Provided reagents: YN, TK, JY, KB, Wrote paper: YJ. Reviewed and revised the paper: HT, QN, JJ, DL, YJ.

Corresponding author

Correspondence to Yongsu Jeong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal experiments were conducted in accordance with the guidelines of the Kyung Hee University Institutional Animal Care and Use Committee (KHGASP-20–015).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, HN., Nguyen, QH., Jeong, Je. et al. The embryonic patterning gene Dbx1 governs the survival of the auditory midbrain via Tcf7l2-Ap2δ transcriptional cascade. Cell Death Differ 30, 1563–1574 (2023). https://doi.org/10.1038/s41418-023-01165-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01165-6

Search

Quick links