Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRL4B complex-mediated H2AK119 monoubiquitination restrains Th1 and Th2 cell differentiation

Abstract

CD4+ T helper (Th) cell differentiation is regulated by lineage-specific expression of transcription factors, which is tightly associated with epigenetic modifications, including histone acetylation and methylation. However, the factors regulating histone modifications involved in Th cell differentiation remain largely unknown. We herein demonstrated a critical role of Cullin 4B (CUL4B) in restricting Th1 and Th2 cell differentiation. CUL4B, which is assembled into the CUL4B-RING E3 ligase (CRL4B) complex, participates in various physiological and developmental processes through epigenetic repression of transcription. Depletion of Cul4b in CD4+ T cells enhanced Th1 and Th2 cell differentiation. In vivo, an aggravated Th2 response caused by the absence of CUL4B was observed in a murine asthma model. Mechanistically, the CRL4B complex promoted monoubiquitination at H2AK119 (H2AK119ub1) and polycomb repressive complex 2 (PRC2)-mediated trimethylation at H3K27 (H3K27me3) at Tbx21 and Maf and consequently repressed their expression during Th cell differentiation. Our study suggests that CRL4B complex-mediated H2AK119ub1 deposition functions to prevent the aberrant expression of Th1 and Th2 lineage-specific genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Depletion of CUL4B in T cells upregulates the expression of Th1 and Th2 cell differentiation-associated genes.
Fig. 2: Loss of CUL4B enhances Th1 and Th2 differentiation in vitro.
Fig. 3: Loss of CUL4B enhances plasticity between Th1 and Th2 cells in vitro.
Fig. 4: CUL4B deficiency enhances the Th2 cell-mediated immune response in murine models.
Fig. 5: CRL4B restrains Th1 and Th2 cell differentiation by repressing T-bet and c-Maf expression.
Fig. 6: CRL4B-dependent H2AK119ub1 and EZH2-dependent H3K27me3 modifications are associated with silencing of lineage-specific loci during Th cell differentiation.
Fig. 7: Depletion of CUL4B reduces H2AK119ub1 and H3K27me3 levels at lineage-specific loci.

Similar content being viewed by others

Data availability

Raw and processed data for RNA-seq can be obtained from PRJNA929073 in NCBI Sequence Read Archive (SRA) database. All of the full-length original western blots for these results are provided. All other datasets are available upon request from the corresponding authors.

References

  1. Zhu J. T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harb Perspect Biol. 2018;10:a030338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol. 2019;16:634–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100:655–69.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng W-P, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89:587–96.

    Article  CAS  PubMed  Google Scholar 

  5. Fujiwara M, Hirose K, Kagami S-I, Takatori H, Wakashin H, Tamachi T, et al. T-bet inhibits both TH2 cell-mediated eosinophil recruitment and TH17 cell-mediated neutrophil recruitment into the airways. J Allergy Clin Immunol. 2007;119:662–70.

    Article  CAS  PubMed  Google Scholar 

  6. Takemoto N, Kamogawa Y, Jun Lee H, Kurata H, Arai KI, O’Garra A, et al. Cutting edge: chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for Th2-specific cytokine gene cluster. J Immunol. 2000;165:6687–91.

    Article  CAS  PubMed  Google Scholar 

  7. Yamashita M, Ukai-Tadenuma M, Kimura M, Omori M, Inami M, Taniguchi M, et al. Identification of a conserved GATA3 response element upstream proximal from the interleukin-13 gene locus. J Biol Chem. 2002;277:42399–408.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A, Wang Q, et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol. 2004;5:1157–65.

    Article  CAS  PubMed  Google Scholar 

  9. Lee HJ, Takemoto N, Kurata H, Kamogawa Y, Miyatake S, O’Garra A, et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med. 2000;192:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ho IC, Lo D, Glimcher LH. c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J Exp Med. 1998;188:1859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim JI, Ho IC, Grusby MJ, Glimcher LH. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity. 1999;10:745–51.

    Article  CAS  PubMed  Google Scholar 

  12. Hirahara K, Vahedi G, Ghoreschi K, Yang XP, Nakayamada S, Kanno Y, et al. Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology. 2011;134:235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol. 2009;9:91–105.

    Article  CAS  PubMed  Google Scholar 

  14. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30:155–67.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, et al. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4+ T helper type 1 and type 2 cells. Immunity. 2013;39:819–32.

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Zou J, Wang M, Ding X, Chepelev I, Zhou X, et al. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat Commun. 2014;5:5780.

    Article  CAS  PubMed  Google Scholar 

  17. Antignano F, Burrows K, Hughes MR, Han JM, Kron KJ, Penrod NM, et al. Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation. J Clin Investig. 2014;124:1945–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature. 2012;487:249–53.

    Article  CAS  PubMed  Google Scholar 

  19. Scheer S, Runting J, Bramhall M, Russ B, Zaini A, Ellemor J, et al. The Methyltransferase DOT1L controls activation and lineage integrity in CD4+ T cells during infection and inflammation. Cell Rep. 2020;33:108505.

    Article  CAS  PubMed  Google Scholar 

  20. Müller J, Verrijzer P. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr Opin Genet Dev. 2009;19:150–8.

    Article  PubMed  Google Scholar 

  21. Tamburri S, Lavarone E, Fernández-Pérez D, Conway E, Zanotti M, Manganaro D, et al. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol Cell. 2020;77:840–856.e845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hosokawa H, Kimura MY, Shinnakasu R, Suzuki A, Miki T, Koseki H, et al. Regulation of Th2 cell development by Polycomb group gene bmi-1 through the stabilization of GATA3. J Immunol (Baltimore, Md: 1950). 2006;177:7656–64.

    Article  CAS  Google Scholar 

  23. Kimura M, Koseki Y, Yamashita M, Watanabe N, Shimizu C, Katsumoto T, et al. Regulation of Th2 cell differentiation by mel-18, a mammalian polycomb group gene. Immunity. 2001;15:275–87.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki A, Iwamura C, Shinoda K, Tumes DJ, Kimura MY, Hosokawa H, et al. Polycomb group gene product Ring1B regulates Th2-driven airway inflammation through the inhibition of Bim-mediated apoptosis of effector Th2 cells in the lung. J Immunol (Baltimore, Md: 1950). 2010;184:4510–20.

    Article  CAS  Google Scholar 

  25. Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene. 2015;573:33–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu H, Yang Y, Ji Q, Zhao W, Jiang B, Liu R, et al. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer Cell. 2012;22:781–95.

    Article  CAS  PubMed  Google Scholar 

  27. Yang Y, Liu R, Qiu R, Zheng Y, Huang W, Hu H, et al. CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene. 2015;34:104–18.

    Article  PubMed  Google Scholar 

  28. Ji Q, Hu H, Yang F, Yuan J, Yang Y, Jiang L, et al. CRL4B interacts with and coordinates the SIN3A-HDAC complex to repress CDKN1A and drive cell cycle progression. J Cell Sci. 2014;127:4679–91.

    PubMed  Google Scholar 

  29. Zou Y, Liu Q, Chen B, Zhang X, Guo C, Zhou H, et al. Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet. 2007;80:561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou Y, Mi J, Cui J, Lu D, Zhang X, Guo C, et al. Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem. 2009;284:33320–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang B, Zhao W, Yuan J, Qian Y, Sun W, Zou Y, et al. Lack of Cul4b, an E3 ubiquitin ligase component, leads to embryonic lethality and abnormal placental development. PLoS ONE. 2012;7:e37070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li P, Song Y, Zan W, Qin L, Han S, Jiang B, et al. Lack of CUL4B in adipocytes promotes PPARγ-mediated adipose tissue expansion and insulin sensitivity. Diabetes. 2017;66:300–13.

    Article  CAS  PubMed  Google Scholar 

  33. Qian Y, Yuan J, Hu H, Yang Q, Li J, Zhang S, et al. The CUL4B/AKT/β-Catenin Axis Restricts the Accumulation of Myeloid-Derived Suppressor Cells to Prohibit the Establishment of a Tumor-Permissive Microenvironment. Cancer Res. 2015;75:5070–83.

    Article  CAS  PubMed  Google Scholar 

  34. Lin C-Y, Chen C-Y, Yu C-H, Yu IS, Lin S-R, Wu J-T, et al. Human X-linked Intellectual Disability Factor CUL4B Is Required for Post-meiotic Sperm Development and Male Fertility. Sci Rep. 2016;6:20227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dar AA, Sawada K, Dybas JM, Moser EK, Lewis EL, Park E, et al. The E3 ubiquitin ligase Cul4b promotes CD4+ T cell expansion by aiding the repair of damaged DNA. PLoS Biol. 2021;19:e3001041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu Z, Li L, Qian Y, Song Y, Qin L, Duan Y, et al. Upregulation of IL-6 in CUL4B-deficient myeloid-derived suppressive cells increases the aggressiveness of cancer cells. Oncogene. 2019;38:5860–72.

    Article  CAS  PubMed  Google Scholar 

  37. Li Q, Cui M, Yang F, Li N, Jiang B, Yu Z, et al. A cullin 4B-RING E3 ligase complex fine-tunes pancreatic δ cell paracrine interactions. J Clin Investig. 2017;127:2631–46.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jelley-Gibbs DM, Lepak NM, Yen M, Swain SL. Two distinct stages in the transition from naive CD4 T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J Immunol. 2000;165:5017–26.

    Article  CAS  PubMed  Google Scholar 

  39. Roederer M. Interpretation of cellular proliferation data: avoid the panglossian. Cytometry A. 2011;79:95–101.

    Article  PubMed  Google Scholar 

  40. Smith PM, Garrett WS. The gut microbiota and mucosal T cells. Front Microbiol. 2011;2:111.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Temelkovski J, Hogan SP, Shepherd DP, Foster PS, Kumar RK. An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax. 1998;53:849–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wurster AL, Pazin MJ. BRG1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells. Mol Cell Biol. 2008;28:7274–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan Y, Huo X, Guo B, Zhang X, Yang Y, Lian J, et al. Cullin 4b-RING ubiquitin ligase targets IRGM1 to regulate Wnt signaling and intestinal homeostasis. Cell Death Differ. 2022;29:1673–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Pan X, Li Y, Wang R, Yang Y, Jiang B, et al. CUL4B renders breast cancer cells tamoxifen‐resistant via miR‐32‐5p/ER‐α36 axis. J Pathol. 2021;254:185–98.

    Article  CAS  PubMed  Google Scholar 

  45. Song Y, Li P, Qin L, Xu Z, Jiang B, Ma C, et al. CUL4B negatively regulates Toll-like receptor-triggered proinflammatory responses by repressing Pten transcription. Cell Mol Immunol. 2021;18:339–49.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Z, Yin H, Lau CS, Lu Q. Histone Posttranslational Modifications of CD4(+) T Cell in Autoimmune Diseases. Int J Mol Sci. 2016;17:1547.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Parmentier R, Racine L, Moussy A, Chantalat S, Sudharshan R, Papili Gao N, et al. Global genome decompaction leads to stochastic activation of gene expression as a first step toward fate commitment in human hematopoietic cells. PLOS Biol. 2022;20:e3001849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yagi R, Zhu J, Paul WE. An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int Immunol. 2011;23:415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fields PE, Lee GR, Kim ST, Bartsevich VV, Flavell RA. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity. 2004;21:865–76.

    Article  CAS  PubMed  Google Scholar 

  50. Baguet A, Bix M. Chromatin landscape dynamics of the Il4-Il13 locus during T helper 1 and 2 development. Proc Natl Acad Sci U S A. 2004;101:11410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu J, Paul WE. Heterogeneity and plasticity of T helper cells. Cell Res. 2010;20:4–12.

    Article  PubMed  Google Scholar 

  52. Murphy E, Shibuya K, Hosken N, Openshaw P, Maino V, Davis K, et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J Exp Med. 1996;183:901–13.

    Article  CAS  PubMed  Google Scholar 

  53. Benck CJ, Martinov T, Fife BT, Chatterjea D. Isolation of Infiltrating Leukocytes from Mouse Skin Using Enzymatic Digest and Gradient Separation. J Vis Exp. 2016:e53638.

  54. Broggi A, Cigni C, Zanoni I, Granucci F. Preparation of Single-cell Suspensions for Cytofluorimetric Analysis from Different Mouse Skin Regions. J Vis Exp. 2016:e52589.

  55. Li S, Bostick JW, Ye J, Qiu J, Zhang B, Urban JF, et al. Aryl Hydrocarbon Receptor Signaling Cell Intrinsically Inhibits Intestinal Group 2 Innate Lymphoid Cell Function. Immunity. 2018;49:915–28.e915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yuan J, Han B, Hu H, Qian Y, Liu Z, Wei Z, et al. CUL4B activates Wnt/β‐catenin signalling in hepatocellular carcinoma by repressing Wnt antagonists. J Pathol. 2015;235:784–95.

    Article  CAS  PubMed  Google Scholar 

  57. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  58. Roederer M. Interpretation of cellular proliferation data: Avoid the panglossian. Cytometry Part A. 2011;79A:95–101.

    Article  Google Scholar 

  59. Dyer KD, Garcia-Crespo KE, Killoran KE, Rosenberg HF. Antigen profiles for the quantitative assessment of eosinophils in mouse tissues by flow cytometry. J Immunol Methods. 2011;369:91–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Hoecke L, Job ER, Saelens X, Roose K. Bronchoalveolar Lavage of Murine Lungs to Analyze Inflammatory Cell Infiltration. J Vis Exp. 2017:55398.

  61. Ma W, Jin Q, Guo H, Han X, Xu L, Lu S, et al. Metformin Ameliorates Inflammation and Airway Remodeling of Experimental Allergic Asthma in Mice by Restoring AMPKalpha Activity. Front Pharmacol. 2022;13:780148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Translational Medicine Core Facility of Shandong University for technical support.

Funding

This study was supported by grants from the National Natural Science Foundation of China (31872810) to YG, (31970559) to BJ, Suzhou Science and Technology Bureau (ZXL2021440) to PL, the Natural Science Foundation of Jiangsu Province (BK20211543) to PL, and the Natural Science Foundation of Shandong Province (ZR2016HZ01) to YG.

Author information

Authors and Affiliations

Authors

Contributions

PL, YG, and LQ designed the study. LQ, YS, RW, CC, LZ, and SJ performed experiments. FZ analyzed the RNA-seq data. PL, YG, and LQ interpreted the data and wrote the paper. CL, CM, GS, MW, BJ reviewed and edited the paper. YG and PL supervised the project.

Corresponding authors

Correspondence to Yaoqin Gong or Peishan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal experiments were approved by the Animal Care and Use Committee of the School of Basic Medical Science of Shandong University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Song, Y., Zhang, F. et al. CRL4B complex-mediated H2AK119 monoubiquitination restrains Th1 and Th2 cell differentiation. Cell Death Differ 30, 1488–1502 (2023). https://doi.org/10.1038/s41418-023-01155-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01155-8

This article is cited by

Search

Quick links