Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N6-Methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2

Abstract

Epithelial cell damage-initiated chronic obstructive pulmonary disease (COPD) is implicated in regulated cell death (RCD) including ferroptosis triggered by complex gene-environment interactions. Our data showed that iron overload and ferroptosis are associated with COPD progression in COPD patients and in experimental COPD. Furthermore, we found that, in lung tissues of COPD patients, circSAV1 was associated with COPD progression by circRNA-seq screening. Knockdown of circSAV1 reversed cigarette smoke extract (CSE)-induced ferroptosis. Mechanistically, m6A-modified circSAV1 formed an RNA-protein ternary complex of circSAV1/YTHDF1/IREB2 to facilitate the translation of IREB2 mRNA. Elevated protein levels of IREB2 disrupted iron homeostasis, resulting in accumulation of a labile iron pool (LIP) and lipid peroxidation, which contribute to ferroptosis. Here we demonstrate, by use of an experimental COPD model induced by cigarette smoke (CS), that silencing of circSAV1 and the treatment with deferoxamine (DFO) blocked CS-induced ferroptosis of lung epithelial cells, which attenuated COPD progression in mice. Our results reveal that N6-methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2, indicating that circSAV1 is a mediator of ferroptosis and that circSAV1-dependent ferroptosis is a therapeutic target for COPD.

In lung epithelial cell, m6A-modified circSAV1, via recruiting YTHDF1, induces the formation of a circSAV1/YTHDF1/IREB2 mRNA protein ternary complex, which promotes translation of IREB2 mRNA. Further, elevated IREB2 contributes to the accumulation of a labile iron pool (LIP) and lipid peroxidation, then triggers ferroptosis of lung epithelial cells. The ferroptosis of airway epithelial cells and alveolar epithelial cells induces airway remodeling and emphysema, respectively, which causes COPD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ferroptosis, an iron homeostasis disorder, relates to COPD progression.
Fig. 2: circSAV1 was elevated in lung tissue of smokers and COPD smokers, and related to COPD progression.
Fig. 3: circSAV1 enhances free iron and triggers ferroptosis in CSE-treated BEAS-2B cells.
Fig. 4: circSAV1 interacts with YTHDF1 via its m6A motif, which contributes to IREB2 mRNA translation.
Fig. 5: In BEAS-2B cells, circSAV1 triggers ferroptosis via IREB2.
Fig. 6: DFO ameliorates emphysema and airway remodeling through inhibiting ferroptosis in experimental COPD.
Fig. 7: Downregulated circSAV1 reduces emphysema and airway remodeling through inhibiting ferroptosis in experimental COPD.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204–22.

    Article  Google Scholar 

  2. Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, et al. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther. 2020;5:248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuhn C 3rd, Homer RJ, Zhu Z, Ward N, Flavell RA, Geba GP, et al. Airway hyperresponsiveness and airway obstruction in transgenic mice. Morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am J Respir Cell Mol Biol. 2000;22:289–95.

    Article  CAS  PubMed  Google Scholar 

  4. Collaborators GBDT. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet. 2021;397:2337–60.

    Article  Google Scholar 

  5. Halpin DMG, Criner GJ, Papi A, Singh D, Anzueto A, Martinez FJ, et al. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2021;203:24–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoshida M, Minagawa S, Araya J, Sakamoto T, Hara H, Tsubouchi K, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10:3145.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17:2054–81.

    Article  CAS  PubMed  Google Scholar 

  8. Xu M, Tao J, Yang Y, Tan S, Liu H, Jiang J, et al. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis. 2020;11:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang R, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun. 2020;11:6339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu A, Feng B, Yu J, Yan L, Che L, Zhuo Y, et al. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol. 2021;46:102131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rui T, Wang H, Li Q, Cheng Y, Gao Y, Fang X, et al. Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J Pineal Res. 2021;70:e12704.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res. 2021;28:231–43.

    Article  CAS  PubMed  Google Scholar 

  13. Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004;23:386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang W, Deng Z, Hatcher H, Miller LD, Di X, Tesfay L, et al. IRP2 regulates breast tumor growth. Cancer Res. 2014;74:497–507.

    Article  PubMed  Google Scholar 

  15. He YJ, Liu XY, Xing L, Wan X, Chang X, Jiang HL. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 2020;241:119911.

    Article  CAS  PubMed  Google Scholar 

  16. Terzi EM, Sviderskiy VO, Alvarez SW, Whiten GC, Possemato R. Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. Sci Adv. 2021; 7: eabg4302

  17. Li Y, Jin C, Shen M, Wang Z, Tan S, Chen A, et al. Iron regulatory protein 2 is required for artemether -mediated anti-hepatic fibrosis through ferroptosis pathway. Free Radic Biol Med. 2020;160:845–59.

    Article  CAS  PubMed  Google Scholar 

  18. Ghio AJ, Hilborn ED, Stonehuerner JG, Dailey LA, Carter JD, Richards JH, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008;178:1130–8.

    Article  CAS  PubMed  Google Scholar 

  19. Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell. 2022;185:2016–34.

    Article  CAS  PubMed  Google Scholar 

  20. Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet. 2020;21:102–17.

    Article  CAS  PubMed  Google Scholar 

  21. Rossi F, Beltran M, Damizia M, Grelloni C, Colantoni A, Setti A, et al. Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Mol Cell. 2022;82:75–89:e79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell. 2016;165:289–302.

    Article  CAS  PubMed  Google Scholar 

  23. Yang L, Chen Y, Liu N, Lu Y, Ma W, Yang Z, et al. CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decay and upregulating SMAD3. Mol Cancer. 2022;21:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29:481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, et al. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun. 2022;13:494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44:e91.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang J, Tang Q, He J, Li L, Yang N, Yu S, et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucl Acids Res. 2022;50:D326–32.

    Article  CAS  PubMed  Google Scholar 

  29. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Benincasa G, DeMeo DL, Glass K, Silverman EK, Napoli C. Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. Eur Respir J. 2021;57:2003406

  31. Mei D, Tan WSD, Tay Y, Mukhopadhyay A, Wong WSF. Therapeutic RNA Strategies for Chronic Obstructive Pulmonary Disease. Trends Pharmacol Sci. 2020;41:475–86.

    Article  CAS  PubMed  Google Scholar 

  32. Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35:222–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R, et al. mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res. 2021;118:1680–92.

  34. Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xia H, Wu Y, Zhao J, Li W, Lu L, Ma H, et al. The aberrant cross-talk of epithelium-macrophages via METTL3-regulated extracellular vesicle miR-93 in smoking-induced emphysema. Cell Biol Toxicol. 2022;38:167–83.

    Article  CAS  PubMed  Google Scholar 

  36. Ye J, Wang Z, Chen X, Jiang X, Dong Z, Hu S, et al. YTHDF1-enhanced iron metabolism depends on TFRC m(6)A methylation. Theranostics. 2020;10:12072–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 5’ UTR m(6)A Promotes Cap-Independent Translation. Cell. 2015;163:999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi H, Zhang X, Weng YL, Lu Z, Liu Y, Lu Z, et al. m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature. 2018;563:249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol. 2006;2:406–14.

    Article  CAS  PubMed  Google Scholar 

  40. Moroishi T, Nishiyama M, Takeda Y, Iwai K, Nakayama KI. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab. 2011;14:339–51.

    Article  CAS  PubMed  Google Scholar 

  41. Dong G, Feng J, Sun F, Chen J, Zhao XM. A global overview of genetically interpretable multimorbidities among common diseases in the UK Biobank. Genome Med. 2021;13:110.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cloonan SM, Glass K, Laucho-Contreras ME, Bhashyam AR, Cervo M, Pabon MA, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22:163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tandara L, Grubisic TZ, Ivan G, Jurisic Z, Tandara M, Gugo K, et al. Systemic inflammation up-regulates serum hepcidin in exacerbations and stabile chronic obstructive pulmonary disease. Clin Biochem. 2015;48:1252–7.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen J, Li X, Ge C, Min J, Wang F. The multifaceted role of ferroptosis in liver disease. Cell Death Differ. 2022;29:467–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Glickstein H, El RB, Shvartsman M, Cabantchik ZI. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106:3242–50.

    Article  CAS  PubMed  Google Scholar 

  47. Breuer W, Ermers MJ, Pootrakul P, Abramov A, Hershko C, Cabantchik ZI. Desferrioxamine-chelatable iron, a component of serum non-transferrin-bound iron, used for assessing chelation therapy. Blood. 2001;97:792–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Donald L. Hill (University of Alabama at Birmingham, USA), an experienced, English-speaking scientific editor, for editing. This work was supported by the Natural Science Foundations of China (81973085, 82173472, 82173563, 81973005); and the Priority Academic Program Development of Jiangsu Higher Education Institutions (2022); and the Top Talent Support Program for young and middle-aged people of Wuxi Health Committee (BJ2020006).

Author information

Authors and Affiliations

Authors

Contributions

QL and TB developed the hypothesis. TB and YW provided the clinical samples. HX, YW and JL performed the RNA-seq. HX, JZ, JL, CC, YY, LL and QX performed the in vivo experiments. HX, JZ and CC performed the in vitro experiments. QL and HX wrote the manuscript.

Corresponding authors

Correspondence to Tao Bian or Qizhan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

All human research was approved by the ethical committee of Nanjing Medical University (number: 2021-130). All experiments with animals were reviewed and approved by the animal ethics committee of Nanjing Medical University (IACUC-1907025).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Wu, Y., Zhao, J. et al. N6-Methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2. Cell Death Differ 30, 1293–1304 (2023). https://doi.org/10.1038/s41418-023-01138-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01138-9

This article is cited by

Search

Quick links