Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PDLIM3 supports hedgehog signaling in medulloblastoma by facilitating cilia formation

Abstract

Elevated levels of PDLIM3 expression are frequently detected in sonic hedgehog (SHH) group of medulloblastoma (MB). However, the possible role of PDLIM3 in MB tumorigenesis is still unknown. Here, we found that PDLIM3 expression is necessary for hedgehog (Hh) pathway activation in MB cells. PDLIM3 is present in primary cilia of MB cells and fibroblasts, and such cilia localization is mediated by the PDZ domain of PDLIM3 protein. Deletion of PDLIM3 significantly compromised cilia formation and interfered the Hh signaling transduction in MB cells, suggesting that PDLIM3 promotes the Hh signaling through supporting the ciliogenesis. PDLIM3 protein physically interacts with cholesterol, a critical molecule for cilia formation and hedgehog signaling. The disruption of cilia formation and Hh signaling in PDLIM3 null MB cells or fibroblasts, was significantly rescued by treatment with exogenous cholesterol, demonstrating that PDLIM3 facilitates the ciliogenesis through cholesterol provision. Finally, deletion of PDLIM3 in MB cells significantly inhibited their proliferation and repressed tumor growth, suggesting that PDLIM3 is necessary for MB tumorigenesis. Our studies elucidate the critical functions of PDLIM3 in the ciliogenesis and Hh signaling transduction in SHH-MB cells, supporting to utilize PDLIM3 as a molecular marker for defining SHH group of MB in clinics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PDLIM3 expression is upregulated in GNPs and MB cells with SHH pathway activation.
Fig. 2: PDLIM3 is required for SHH signaling transduction in NIH3T3 cells.
Fig. 3: PDLIM3 regulates SHH pathway activation upstream of Gli1.
Fig. 4: PDLIM3 is localized in the cilia of NIH3T3 cells and MB cells.
Fig. 5: PDLIM3 promotes cilia formation in NIH3T3 cells.
Fig. 6: PDLIM3 tethers cholesterol in the cilia of NIH3T3 cells.
Fig. 7: PDLIM3 is required for MB growth.

Similar content being viewed by others

Data availability

All constructs generated in our studies are available to the scientific community upon request.

References

  1. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72.

    Article  CAS  PubMed  Google Scholar 

  2. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31:737–754 e736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22:103–14.

    Article  CAS  PubMed  Google Scholar 

  4. Dahmane N. Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–3100.

    Article  PubMed  Google Scholar 

  5. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell. 2008;14:123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell. 2008;14:135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15:3059–87.

    Article  CAS  PubMed  Google Scholar 

  8. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.

    Article  CAS  PubMed  Google Scholar 

  9. Bangs F, Anderson KV. Primary cilia and mammalian hedgehog signaling. Cold Spring Harb Perspect Biol. 2017;9:a028175.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu X, Fuentes EJ. Emerging themes in PDZ domain signaling: structure, function, and inhibition. Int Rev Cell Mol Biol. 2019;343:129–218.

    Article  CAS  PubMed  Google Scholar 

  11. Ponting CP, Phillips C, Davies KE, Blake DJ. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays. 1997;19:469–79.

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann P, Zhang Z, Degeest G, Mortier E, Leenaerts I, Coomans C, et al. Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. Dev Cell. 2005;9:377–88.

    Article  CAS  PubMed  Google Scholar 

  13. Sheng R, Chen Y, Yung Gee H, Stec E, Melowic HR, Blatner NR, et al. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat Commun. 2012;3:1249.

    Article  PubMed  Google Scholar 

  14. Bach I. The LIM domain: regulation by association. Mech Dev. 2000;91:5–17.

    Article  CAS  PubMed  Google Scholar 

  15. Ohsawa N, Koebis M, Suo S, Nishino I, Ishiura S. Alternative splicing of PDLIM3/ALP, for alpha-actinin-associated LIM protein 3, is aberrant in persons with myotonic dystrophy. Biochem Biophys Res Commun. 2011;409:64–69.

    Article  CAS  PubMed  Google Scholar 

  16. Pomies P, Macalma T, Beckerle MC. Purification and characterization of an alpha-actinin-binding PDZ-LIM protein that is up-regulated during muscle differentiation. J Biol Chem. 1999;274:29242–50.

    Article  CAS  PubMed  Google Scholar 

  17. Xia H, Winokur ST, Kuo WL, Altherr MR, Bredt DS. Actinin-associated LIM protein: identification of a domain interaction between PDZ and spectrin-like repeat motifs. J Cell Biol. 1997;139:507–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shou Y, Robinson DM, Amakye DD, Rose KL, Cho YJ, Ligon KL, et al. A five-gene hedgehog signature developed as a patient preselection tool for hedgehog inhibitor therapy in medulloblastoma. Clin Cancer Res. 2015;21:585–93.

    Article  CAS  PubMed  Google Scholar 

  19. Northcott PA, Shih DJ, Remke M, Cho YJ, Kool M, Hawkins C, et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 2012;123:615–26.

    Article  CAS  PubMed  Google Scholar 

  20. Gordon RE, Zhang L, Peri S, Kuo YM, Du F, Egleston BL, et al. Statins synergize with hedgehog pathway inhibitors for treatment of medulloblastoma. Clin Cancer Res. 2018;24:1375–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fogarty MP, Emmenegger BA, Grasfeder LL, Oliver TG, Wechsler-Reya RJ. Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci USA. 2007;104:2973–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng Y, Franco-Barraza J, Wang Y, Zheng C, Zhang L, Qu Y, et al. Sustained hedgehog signaling in medulloblastoma tumoroids is attributed to stromal astrocytes and astrocyte-derived extracellular matrix. Lab Invest. 2020;100:1208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng Y, Liao S, Xu G, Hu J, Guo D, Du F, et al. NeuroD1 dictates tumor cell differentiation in medulloblastoma. Cell Rep. 2020;31:107782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ellis T, Smyth I, Riley E, Graham S, Elliot K, Narang M, et al. Patched 1 conditional null allele in mice. Genesis. 2003;36:158–61.

    Article  CAS  PubMed  Google Scholar 

  25. Jeong J, Mao J, Tenzen T, Kottmann AH, McMahon AP. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 2004;18:937–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krcmery J, Camarata T, Kulisz A, Simon HG. Nucleocytoplasmic functions of the PDZ-LIM protein family: new insights into organ development. Bioessays. 2010;32:100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klaavuniemi T, Alho N, Hotulainen P, Kelloniemi A, Havukainen H, Permi P, et al. Characterization of the interaction between Actinin-Associated LIM Protein (ALP) and the rod domain of alpha-actinin. BMC Cell Biol. 2009;10:22.

    Article  PubMed  PubMed Central  Google Scholar 

  28. McKeown CR, Han HF, Beckerle MC. Molecular characterization of the Caenorhabditis elegans ALP/Enigma gene alp-1. Dev Dyn. 2006;235:530–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, et al. Cellular cholesterol directly activates smoothened in hedgehog signaling. Cell. 2016;166:1176–1187 e1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A, Byrne EF, et al. Cholesterol activates the G-protein coupled receptor smoothened to promote hedgehog signaling. Elife. 2016;5:e20304.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Myers BR, Neahring L, Zhang Y, Roberts KJ, Beachy PA. Rapid, direct activity assays for smoothened reveal hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proc Natl Acad Sci USA. 2017;114:E11141–E11150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinnebrew M, Luchetti G, Sircar R, Frigui S, Viti LV, Naito T, et al. Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes. Elife. 2021;10:e70504.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kinnebrew M, Iverson EJ, Patel BB, Pusapati GV, Kong JH, Johnson KA, et al. Cholesterol accessibility at the ciliary membrane controls hedgehog signaling. Elife. 2019;8:e20304.

    Article  Google Scholar 

  34. Miyamoto T, Hosoba K, Itabashi T, Iwane AH, Akutsu SN, Ochiai H, et al. Insufficiency of ciliary cholesterol in hereditary Zellweger syndrome. EMBO J. 2020;39:e103499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pashmforoush M, Pomies P, Peterson KL, Kubalak S, Ross J Jr, Hefti A, et al. Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med. 2001;7:591–7.

    Article  CAS  PubMed  Google Scholar 

  37. Maerz LD, Burkhalter MD, Schilpp C, Wittekindt OH, Frick M, Philipp M. Pharmacological cholesterol depletion disturbs ciliogenesis and ciliary function in developing zebrafish. Commun Biol. 2019;2:31.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reilly ML, Benmerah A. Ciliary kinesins beyond IFT: cilium length, disassembly, cargo transport and signalling. Biol Cell. 2019;111:79–94.

    Article  PubMed  Google Scholar 

  39. Ishikawa H, Marshall WF. Intraflagellar transport and ciliary dynamics. Cold Spring Harb Perspect Biol. 2017;9:a021998.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bidet M, Joubert O, Lacombe B, Ciantar M, Nehme R, Mollat P, et al. The hedgehog receptor patched is involved in cholesterol transport. PLoS One. 2011;6:e23834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong X, Qian H, Cao P, Zhao X, Zhou Q, Lei J, et al. Structural basis for the recognition of sonic hedgehog by human Patched1. Science. 2018;361:eaas8935.

    Article  PubMed  Google Scholar 

  42. Chong YC, Mann RK, Zhao C, Kato M, Beachy PA. Bifurcating action of smoothened in hedgehog signaling is mediated by Dlg5. Genes Dev. 2015;29:262–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suzuki A, Ogata K, Yoshioka H, Shim J, Wassif CA, Porter FD, et al. Disruption of Dhcr7 and Insig1/2 in cholesterol metabolism causes defects in bone formation and homeostasis through primary cilium formation. Bone Res. 2020;8:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maharjan Y, Lee JN, Kwak SA, Dutta RK, Park C, Choe SK, et al. TMEM135 regulates primary ciliogenesis through modulation of intracellular cholesterol distribution. EMBO Rep. 2020;21:e48901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kool M, Jones DT, Jager N, Northcott PA, Pugh TJ, Hovestadt V, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25:393–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361:1173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gajjar A, Stewart CF, Ellison DW, Kaste S, Kun LE, Packer RJ, et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin Cancer Res. 2013;19:6305–12.

    Article  CAS  PubMed  Google Scholar 

  48. Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science. 2009;326:572–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. James Chen at Stanford University for providing Sufu−/− cells, Dr. Pascal Pomies at the University Montpellier in France for providing PDLIM3 antibody. We also appreciate Drs. Y Eugene Chinn and Jiawei Wu for critical discussion. This research is supported by the Department of Health in Pennsylvania (to ZY), and by National Natural Science Foundation of China (82072798 to LZ, 82073873 to YW).

Author information

Authors and Affiliations

Authors

Contributions

ZY and LZ conceived and supervised the project. JZ; YY; XL; GL and TM performed experiments and analyzed data. YL; YW; GX; HR and LZ designed the experiments and analyzed data. JZ; LZ and ZY wrote the manuscript.

Corresponding authors

Correspondence to Li Zhang or Zeng-jie Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All experiments with mice were conducted under approval of and following the guideline of the Institutional Animal Care and Use committee at Fox Chase Cancer Center.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yang, Y., Li, X. et al. PDLIM3 supports hedgehog signaling in medulloblastoma by facilitating cilia formation. Cell Death Differ 30, 1198–1210 (2023). https://doi.org/10.1038/s41418-023-01131-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01131-2

Search

Quick links