Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic inactivation of RIP1 kinase does not ameliorate disease in a mouse model of ALS


RIP1 kinase is proposed to play a critical role in driving necroptosis and inflammation in neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS). Preclinical studies indicated that while pharmacological inhibition of RIP1 kinase can ameliorate axonal pathology and delay disease onset in the mutant SOD1 transgenic (SOD1-Tg) mice, genetic blockade of necroptosis does not provide benefit in this mouse model. To clarify the role of RIP1 kinase activity in driving pathology in SOD1-Tg mice, we crossed SOD1-Tgs to RIP1 kinase-dead knock-in mice, and measured disease progression using functional and histopathological endpoints. Genetic inactivation of the RIP1 kinase activity in the SOD1-Tgs did not benefit the declining muscle strength or nerve function, motor neuron degeneration or neuroinflammation. In addition, we did not find evidence of phosphorylated RIP1 accumulation in the spinal cords of ALS patients. On the other hand, genetic inactivation of RIP1 kinase activity ameliorated the depletion of the neurotransmitter dopamine in a toxin model of dopaminergic neurodegeneration. These findings indicate that RIP1 kinase activity is dispensable for disease pathogenesis in the SOD1-Tg mice while inhibition of kinase activity may provide benefit in acute injury models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Increased pRIP1 in SOD1-Tg mice spinal cords in late-stage disease without detectable expression of RIP3 or MLKL. Genetic inactivation of RIP1 kinase does not provide protection against declining muscle strength and nerve physiology in the SOD1-Tg mice.
Fig. 2: Genetic inactivation of RIP1 kinase activity does not alter axonal pathology in the SOD1-Tg mice.
Fig. 3: Genetic inactivation of RIP1 kinase activity does not ameliorate neurodegeneration in the SOD1-Tg mice.
Fig. 4: Genetic inactivation of RIP1 kinase activity does not alter inflammation in the SOD1-Tg mice spinal cords.
Fig. 5: RIP1 kinase activation in ALS is limited to endothelial cells in the spinal nerve.
Fig. 6: Genetic inactivation of RIP1 kinase activity is partially protective in the MPTP model.

Data availability

Raw data and uncropped immunoblots could be accessed at Mendeley Data Archive under


  1. 1.

    Martens S, Hofmans S, Declercq W, Augustyns K, Vandenabeele P. Inhibitors targeting RIPK1/RIPK3: old and new drugs. Trends Pharmacol Sci. 2020;41:209–24.

  2. 2.

    Degterev A, Ofengeim D, Yuan J. Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci USA. 2019;116:9714–22.

    CAS  PubMed  Google Scholar 

  3. 3.

    Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Polykratis A, Hermance N, Zelic M, Roderick J, Kim C, Van T-M, et al. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J Immunol. 2014;193:1539–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 2015;10:1836–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Schwarzer R, Laurien L, Pasparakis M. New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Curr Opin Cell Biol. 2020;63:186–93.

    CAS  PubMed  Google Scholar 

  7. 7.

    Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao Y-S, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012;150:339–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    He S, Wang L, Miao L, Wang T, Du F, Zhao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137:1100–11.

    CAS  PubMed  Google Scholar 

  9. 9.

    Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:213–27.

    CAS  PubMed  Google Scholar 

  11. 11.

    Liu S, Liu H, Johnston A, Hanna-Addams S, Reynoso E, Xiang Y, et al. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc Natl Acad Sci USA. 2017;114:E7450–E9.

    CAS  PubMed  Google Scholar 

  12. 12.

    Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39:443–53.

    CAS  PubMed  Google Scholar 

  13. 13.

    Patel S, Webster JD, Varfolomeev E, Kwon YC, Cheng JH, Zhang J, et al. RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases. Cell Death Differ. 2020;27:161–75.

    CAS  PubMed  Google Scholar 

  14. 14.

    Newton K, Dugger D, Maltzman A, Greve J, Hedehus M, Martin-McNulty B, et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 2016;23:1565–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lule S, Wu L, McAllister LM, Edmiston WJ III, Chung JY, Levy E, et al. Genetic inhibition of RIPK1 reduces cell death and improves functional outcome after intracerebral hemorrhage in mice. Stroke 2017;48:2549.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res. 2020:1–18.

  17. 17.

    Chen T, Pan H, Li J, Xu H, Jin H, Qian C, et al. Inhibiting of RIPK3 attenuates early brain injury following subarachnoid hemorrhage: possibly through alleviating necroptosis. Biomedicine Pharmacother. 2018;107:563–70.

    CAS  Google Scholar 

  18. 18.

    Wang Y, Wang H, Tao Y, Zhang S, Wang J, Feng X. Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience. 2014;266:91–101.

    CAS  PubMed  Google Scholar 

  19. 19.

    Zhu S, Zhang Y, Bai G, Li H. Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington’s disease. Cell Death Dis. 2011;2:e115–e.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, et al. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc Natl Acad Sci USA. 2017;114:E8788–E97.

    CAS  PubMed  Google Scholar 

  21. 21.

    Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, et al. Necroptosis activation in Alzheimer’s disease. Nat Neurosci. 2017;20:1236.

    CAS  PubMed  Google Scholar 

  22. 22.

    Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, et al. Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep. 2018;22:2066–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Xu D, Jin T, Zhu H, Chen H, Ofengeim D, Zou C, et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell. 2018;174:1477–91. e19

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron. 2014;81:1001–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 2016;353:603–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Yoshikawa M, Saitoh M, Katoh T, Seki T, Bigi SV, Shimizu Y, et al. Discovery of 7-oxo-2, 4, 5, 7-tetrahydro-6 H-pyrazolo [3, 4-c] pyridine derivatives as potent, orally available, and brain-penetrating receptor interacting protein 1 (RIP1) kinase inhibitors: analysis of structure–kinetic relationships. J Med Chem. 2018;61:2384–409.

    CAS  PubMed  Google Scholar 

  27. 27.

    Webster JD, Vucic D. The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues. Front Cell Dev Biol. 2020;8:365.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016;539:197–206.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Dermentzaki G, Politi KA, Lu L, Mishra V, Pérez-Torres EJ, Sosunov AA, et al. Deletion of Ripk3 prevents Motor Neuron death in vitro but not in vivo. eneuro. 2019;6:ENEURO.0308-18.2018.

  30. 30.

    Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465:223–6.

    CAS  PubMed  Google Scholar 

  31. 31.

    Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathologica. 2015;130:77–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Feng SM, Che CH, Feng SY, Liu CY, Li LY, Li YX, et al. Novel mutation in optineurin causing aggressive ALS+/− frontotemporal dementia. Annals of Clinical and Translational. Neurology 2019;6:2377–83.

    CAS  Google Scholar 

  33. 33.

    Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18:631–6.

    CAS  PubMed  Google Scholar 

  34. 34.

    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362:59–62.

    CAS  PubMed  Google Scholar 

  35. 35.

    Philips T, Rothstein JD. Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol. 2015;69:1–5. 21

    Google Scholar 

  36. 36.

    Wang T, Perera ND, Chiam MD, Cuic B, Wanniarachchillage N, Tomas D, et al. Necroptosis is dispensable for motor neuron degeneration in a mouse model of ALS. Cell Death Differ. 2019;27:1728–39.

  37. 37.

    Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 2014;56:481–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D, et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science. 2014;343:1357–60.

    CAS  PubMed  Google Scholar 

  39. 39.

    Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264:1772–5.

    CAS  PubMed  Google Scholar 

  40. 40.

    Sengupta-Ghosh A, Dominguez SL, Xie L, Barck KH, Jiang Z, Earr T, et al. Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1G93A mouse model of ALS. Neurobiol Dis. 2019;124:340–52.

    CAS  PubMed  Google Scholar 

  41. 41.

    de Almagro MC, Goncharov T, Izrael-Tomasevic A, Duttler S, Kist M, Varfolomeev E, et al. Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death Differ. 2017;24:26–37.

    PubMed  Google Scholar 

  42. 42.

    Le Pichon CE, Meilandt WJ, Dominguez S, Solanoy H, Lin H, Ngu H, et al. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med. 2017;9:eaag0394.

    PubMed  Google Scholar 

  43. 43.

    Veta M, Van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP. Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PloS One. 2013;8:e70221.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    De Olmos JS, Beltramino CA, De Lorenzo SDO. Use of an amino-cupric-silver technique for the detection of early and semiacute neuronal degeneration caused by neurotoxicants, hypoxia, and physical trauma. Neurotoxicology Teratol. 1994;16:545–61.

    Google Scholar 

  45. 45.

    Zendedel A, Beyer C, Kipp M. Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci. 2013;51:567–72.

    CAS  PubMed  Google Scholar 

  46. 46.

    Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci. 2013;16:571.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Philips T, Bento-Abreu A, Nonneman A, Haeck W, Staats K, Geelen V, et al. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain. 2013;136:471–82.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14:577–89.

    CAS  PubMed  Google Scholar 

  49. 49.

    Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci. 2019;13:1310.

  50. 50.

    Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of models of Parkinson’s disease. Front Neurosci. 2016;9:503.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Dionísio PA, Oliveira SR, Gaspar MM, Gama MJ, Castro-Caldas M, Amaral JD, et al. Ablation of RIP3 protects from dopaminergic neurodegeneration in experimental Parkinson’s disease. Cell Death Dis. 2019;10:1–14.

    Google Scholar 

  52. 52.

    Lin Q-S, Chen P, Wang W-X, Lin C-C, Zhou Y, Yu L-H, et al. RIP1/RIP3/MLKL mediates dopaminergic neuron necroptosis in a mouse model of Parkinson disease. Lab Investig. 2019;100:503–11.

    PubMed  Google Scholar 

  53. 53.

    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 2013;23:994–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Kanno H, Ozawa H, Tateda S, Yahata K, Itoi E. Upregulation of the receptor-interacting protein 3 expression and involvement in neural tissue damage after spinal cord injury in mice. BMC Neurosci. 2015;16:62.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Webster JD, Kwon YC, Park S, Zhang H, Corr N, Ljumanovic N, et al. RIP1 kinase activity is critical for skin inflammation but not for viral propagation. J Leukoc Biol. 2020;107:941–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Vlantis K, Wullaert A, Polykratis A, Kondylis V, Dannappel M, Schwarzer R, et al. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-κB-dependent and-independent functions. Immunity. 2016;44:553–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Berger SB, Kasparcova V, Hoffman S, Swift B, Dare L, Schaeffer M, et al. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J Immunol. 2014;192:5476–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Rickard JA, Anderton H, Etemadi N, Nachbur U, Darding M, Peltzer N, et al. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. Elife. 2014;3:e03464.

    PubMed Central  Google Scholar 

  60. 60.

    Morrice JR, Gregory-Evans CY, Shaw CA. Animal models of amyotrophic lateral sclerosis: a comparison of model validity. Neural regeneration Res. 2018;13:2050.

    Google Scholar 

  61. 61.

    Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, et al. Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61:427–34.

    CAS  PubMed  Google Scholar 

  62. 62.

    Garbuzova-Davis S, Sanberg PR. Blood-CNS barrier impairment in ALS patients versus an animal model. Front Cell Neurosci. 2014;8:21.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Garbuzova-Davis S, Kurien C, Thomson A, Falco D, Ahmad S, Staffetti J, et al. Endothelial and astrocytic support by human bone marrow stem cell grafts into symptomatic ALS mice towards blood-spinal cord barrier repair. Sci Rep. 2017;7:884.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Garbuzova-Davis S, Ehrhart J, Mustafa H, Llauget A, Boccio KJ, Sanberg PR, et al. Phenotypic characteristics of human bone marrow-derived endothelial progenitor cells in vitro support cell effectiveness for repair of the blood-spinal cord barrier in ALS. Brain Res. 2019;1724:146428.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Yu X, Mao M, Liu X, Shen T, Li T, Yu H, et al. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome. J Mol Med. 2020;98:569–83.

  66. 66.

    Chen A-Q, Fang Z, Chen X-L, Yang S, Zhou Y-F, Mao L, et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis. 2019;10:1–18.

    Google Scholar 

  67. 67.

    Zelic M, Roderick JE, O’Donnell JA, Lehman J, Lim SE, Janardhan HP, et al. RIP kinase 1–dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J Clin Investig. 2018;128:2064–75.

    PubMed  Google Scholar 

Download references


We thank Shari Lau, Miriam Baca, Margaret Solon and Adam Johnson for technical help, Kim Newton for scientific discussions, and Ben Torres for management of the mouse colonies.

Author information




SD, EV, AE, DV, and BB conceived the study. SD, EV, RB, KS, JT, JI, TE conducted the experiments. SD, EV, RB, JT, JI, HN, OF, JDW, and BB analyzed the data. BB wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Baris Bingol.

Ethics declarations

Conflict of interest

TE and BB are former and all other authors are current employees of Genentech, Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by D.L. Vaux

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dominguez, S., Varfolomeev, E., Brendza, R. et al. Genetic inactivation of RIP1 kinase does not ameliorate disease in a mouse model of ALS. Cell Death Differ 28, 915–931 (2021).

Download citation


Quick links