Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

ABCC4 suppresses glioblastoma progression and recurrence by restraining cGMP-PKG signalling

Abstract

Background

Cyclic nucleotides are critical mediators of cellular signalling in glioblastoma. However, the clinical relevance and mechanisms of regulating cyclic nucleotides in glioblastoma progression and recurrence have yet to be thoroughly explored.

Methods

In silico, mRNA, and protein level analyses identified the primary regulator of cyclic nucleotides in recurrent human glioblastoma. Lentiviral and pharmacological manipulations examined the functional impact of cyclic nucleotide signalling in human glioma cell lines and primary glioblastoma cells. An orthotopic xenograft mice model coupled with aspirin hydrogels verified the in vivo outcome of targeting cyclic nucleotide signalling.

Results

Elevated intracellular levels of cGMP, instead of cAMP, due to a lower substrate efflux from ATP-binding cassette sub-family C member 4 (ABCC4) is engaged in the recurrence of glioblastoma. ABCC4 gene expression is negatively associated with recurrence and overall survival outcomes in glioblastoma specimens. ABCC4 loss-of-function activates cGMP-PKG signalling, promoting malignancy in glioblastoma cells and xenografts. Hydrogels loaded with aspirin, inhibiting glioblastoma progression partly by upregulating ABCC4 expressions, augment the efficacy of standard-of-care therapies in orthotopic glioblastoma xenografts.

Conclusion

ABCC4, repressing the cGMP-PKG signalling pathway, is a tumour suppressor in glioblastoma progression and recurrence. Aspirin hydrogels impede glioblastoma progression through ABCC4 restoration and constitute a viable translational approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low expression of ABCC4 is related to tumour recurrence and poor clinical prognosis of glioma.
Fig. 2: ABCC4 inhibits the proliferation, clonogenic potential, and neurosphere formation of glioma cells.
Fig. 3: ABCC4 suppresses the migration and invasion of glioma cells.
Fig. 4: The cGMP-PKG signalling pathway contributes to ABCC4-mediated biological functions of glioma cells.
Fig. 5: ABCC4 regulates glioma tumorigenicity and invasiveness in vivo.
Fig. 6: ABCC4 inducer, aspirin, provides therapeutic benefits for glioma.

Similar content being viewed by others

Data availability

Additional data will be made available upon request.

References

  1. Davis ME. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20:S2–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Birzu C, French P, Caccese M, Cerretti G, Idbaih A, Zagonel V, et al. Recurrent glioblastoma: from molecular landscape to new treatment perspectives. Cancers (Basel). 2020;13:47.

    Article  PubMed  Google Scholar 

  3. Yang I, Aghi MK. New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol. 2009;6:648–57.

    Article  PubMed  Google Scholar 

  4. Hardman JG, Robison GA, Sutherland EW. Cyclic nucleotides. Annu Rev Physiol. 1971;33:311–36.

    Article  CAS  PubMed  Google Scholar 

  5. Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem. 2007;76:481–511.

    Article  CAS  PubMed  Google Scholar 

  6. Friedman DL. Role of cyclic nucleotides in cell growth and differentiation. Physiol Rev. 1976;56:652–708.

    Article  CAS  PubMed  Google Scholar 

  7. Fajardo AM, Piazza GA, Tinsley HN. The role of cyclic nucleotide signaling pathways in cancer: targets for prevention and treatment. Cancers (Basel). 2014;6:436–58.

    Article  PubMed  Google Scholar 

  8. Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res. 2007;67:651–8.

    Article  CAS  PubMed  Google Scholar 

  9. Warrington NM, Gianino SM, Jackson E, Goldhoff P, Garbow JR, Piwnica-Worms D, et al. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 2010;70:5717–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen TC, Hinton DR, Zidovetzki R, Hofman FM. Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation, and leads to apoptosis in malignant gliomas. Lab Invest. 1998;78:165–74.

    CAS  PubMed  Google Scholar 

  11. Jiang K, Yao G, Hu L, Yan Y, Liu J, Shi J, et al. MOB2 suppresses GBM cell migration and invasion via regulation of FAK/Akt and cAMP/PKA signaling. Cell Death Dis. 2020;11:230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cesarini V, Martini M, Vitiani LR, Gravina GL, Di Agostino S, Graziani G, et al. Type 5 phosphodiesterase regulates glioblastoma multiforme aggressiveness and clinical outcome. Oncotarget. 2017;8:13223–39.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D, et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell. 2010;6:141–52.

    Article  CAS  PubMed  Google Scholar 

  14. Russel FG, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008;29:200–7.

    Article  CAS  PubMed  Google Scholar 

  15. Berthier J, Arnion H, Saint-Marcoux F, Picard N. Multidrug resistance-associated protein 4 in pharmacology: Overview of its contribution to pharmacokinetics, pharmacodynamics and pharmacogenetics. Life Sci. 2019;231:116540.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Zhao L, Li X, Wang X, Li L, Fu X, et al. ATP-binding cassette sub-family C member 4 (ABCC4) is overexpressed in human NK/T-cell lymphoma and regulates chemotherapy sensitivity: potential as a functional therapeutic target. Leuk Res. 2015;39:1448–54.

    Article  CAS  PubMed  Google Scholar 

  17. Copsel S, Garcia C, Diez F, Vermeulem M, Baldi A, Bianciotti LG, et al. Multidrug resistance protein 4 (MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation. J Biol Chem. 2011;286:6979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao X, Guo Y, Yue W, Zhang L, Gu M, Wang Y. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer. Onco Targets Ther. 2014;7:343–51.

    PubMed  PubMed Central  Google Scholar 

  19. Henderson MJ, Haber M, Porro A, Munoz MA, Iraci N, Xue C, et al. ABCC multidrug transporters in childhood neuroblastoma: clinical and biological effects independent of cytotoxic drug efflux. J Natl Cancer Inst. 2011;103:1236–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M, et al. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 2019;86:235–46.

    Article  CAS  PubMed  Google Scholar 

  21. Hsieh CH, Lin YJ, Wu CP, Lee HT, Shyu WC, Wang CC. Livin contributes to tumor hypoxia-induced resistance to cytotoxic therapies in glioblastoma multiforme. Clin Cancer Res. 2015;21:460–70.

    Article  CAS  PubMed  Google Scholar 

  22. Carlson BL, Pokorny JL, Schroeder MA, Sarkaria JN. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr Protoc Pharmacol. 2011;Chapter 14:Unit 14 6.

    Google Scholar 

  23. Hsieh CH, Chang HT, Shen WC, Shyu WC, Liu RS. Imaging the impact of Nox4 in cycling hypoxia-mediated U87 glioblastoma invasion and infiltration. Mol Imaging Biol. 2012;14:489–99.

    Article  PubMed  Google Scholar 

  24. Wei ST, Chiang JY, Wang HL, Lei FJ, Huang YC, Wang CC, et al. Hypoxia-induced CXC chemokine ligand 14 expression drives protumorigenic effects through activation of insulin-like growth factor-1 receptor signaling in glioblastoma. Cancer Sci. 2023;114:174–86.

    Article  CAS  PubMed  Google Scholar 

  25. Hsieh CH, Kuo JW, Lee YJ, Chang CW, Gelovani JG, Liu RS. Construction of mutant TKGFP for real-time imaging of temporal dynamics of HIF-1 signal transduction activity mediated by hypoxia and reoxygenation in tumors in living mice. J Nucl Med. 2009;50:2049–57.

    Article  CAS  PubMed  Google Scholar 

  26. Chou CW, Wang CC, Wu CP, Lin YJ, Lee YC, Cheng YW, et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1. Neuro Oncol. 2012;14:1227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Massimi I, Guerriero R, Lotti LV, Lulli V, Borgognone A, Romani F, et al. Aspirin influences megakaryocytic gene expression leading to up-regulation of multidrug resistance protein-4 in human platelets. Br J Clin Pharmacol. 2014;78:1343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Massimi I, Pulcinelli FM, Piscitelli VP, Alemanno L, Maltese T, Guarino ML, et al. Non-steroidal anti-inflammatory drugs increase MRP4 expression in an endometriotic epithelial cell line in a PPARa dependent manner. Eur Rev Med Pharmacol Sci. 2018;22:8487–96.

    CAS  PubMed  Google Scholar 

  29. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000;52:375–414.

    CAS  PubMed  Google Scholar 

  30. Stryer L. Cyclic GMP cascade of vision. Annu Rev Neurosci. 1986;9:87–119.

    Article  CAS  PubMed  Google Scholar 

  31. Swartling FJ, Ferletta M, Kastemar M, Weiss WA, Westermark B. Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines. Oncogene. 2009;28:3121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Demidenko R, Razanauskas D, Daniunaite K, Lazutka JR, Jankevicius F, Jarmalaite S. Frequent down-regulation of ABC transporter genes in prostate cancer. BMC Cancer. 2015;15:683.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Colavita JPM, Todaro JS, de Sousa M, May M, Gomez N, Yaneff A, et al. Multidrug resistance protein 4 (MRP4/ABCC4) is overexpressed in clear cell renal cell carcinoma (ccRCC) and is essential to regulate cell proliferation. Int J Biol Macromol. 2020;161:836–47.

    Article  CAS  PubMed  Google Scholar 

  34. Sethi S, Benninger MS, Lu M, Havard S, Worsham MJ. Noninvasive molecular detection of head and neck squamous cell carcinoma: an exploratory analysis. Diagn Mol Pathol. 2009;18:81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen JJ, Xiao ZJ, Meng X, Wang Y, Yu MK, Huang WQ, et al. MRP4 sustains Wnt/beta-catenin signaling for pregnancy, endometriosis and endometrial cancer. Theranostics. 2019;9:5049–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He Z, Hu B, Tang L, Zheng S, Sun Y, Sheng Z, et al. The overexpression of MRP4 is related to multidrug resistance in osteosarcoma cells. J Cancer Res Ther. 2015;11:18–23.

    Article  CAS  PubMed  Google Scholar 

  37. Hlavac V, Vaclavikova R, Brynychova V, Kozevnikovova R, Kopeckova K, Vrana D, et al. Role of genetic variation in ABC transporters in breast cancer prognosis and therapy response. Int J Mol Sci. 2020;21:9556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jung M, Gao J, Cheung L, Bongers A, Somers K, Clifton M, et al. ABCC4/MRP4 contributes to the aggressiveness of Myc-associated epithelial ovarian cancer. Int J Cancer. 2020;147:2225–38.

    Article  CAS  PubMed  Google Scholar 

  39. Heimerl S, Bosserhoff AK, Langmann T, Ecker J, Schmitz G. Mapping ATP-binding cassette transporter gene expression profiles in melanocytes and melanoma cells. Melanoma Res. 2007;17:265–73.

    Article  CAS  PubMed  Google Scholar 

  40. Hlavata I, Mohelnikova-Duchonova B, Vaclavikova R, Liska V, Pitule P, Novak P, et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. 2012;27:187–96.

    Article  CAS  PubMed  Google Scholar 

  41. Chen YH, Hung MC, shyu WC. Role of cancer stem cells in brain tumors. Biomedicine. 2012;2:84–91.

    Article  CAS  Google Scholar 

  42. Sahores A, Carozzo A, May M, Gomez N, Di Siervi N, De Sousa Serro M, et al. Multidrug transporter MRP4/ABCC4 as a key determinant of pancreatic cancer aggressiveness. Sci Rep. 2020;10:14217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang G, Wang Z, Qian F, Zhao C, Sun C. Silencing of the ABCC4 gene by RNA interference reverses multidrug resistance in human gastric cancer. Oncol Rep. 2015;33:1147–54.

    Article  CAS  PubMed  Google Scholar 

  44. Hayashi H, Naoi S, Nakagawa T, Nishikawa T, Fukuda H, Imajoh-Ohmi S, et al. Sorting nexin 27 interacts with multidrug resistance-associated protein 4 (MRP4) and mediates internalization of MRP4. J Biol Chem. 2012;287:15054–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park J, Kwak JO, Riederer B, Seidler U, Cole SP, Lee HJ, et al. Na(+)/H(+) exchanger regulatory factor 3 is critical for multidrug resistance protein 4-mediated drug efflux in the kidney. J Am Soc Nephrol. 2014;25:726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hung AY, Sheng M. PDZ domains: structural modules for protein complex assembly. J Biol Chem. 2002;277:5699–702.

    Article  CAS  PubMed  Google Scholar 

  47. Romero G, von Zastrow M, Friedman PA. Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. Adv Pharmacol. 2011;62:279–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Subbaiah VK, Kranjec C, Thomas M, Banks L. PDZ domains: the building blocks regulating tumorigenesis. Biochem J. 2011;439:195–205.

    Article  CAS  PubMed  Google Scholar 

  49. Awtry EH, Loscalzo J. Aspirin. Circulation. 2000;101:1206–18.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Feng Y, Liu X, Ma J, Li Y, Wang T, et al. Beyond a chemopreventive reagent, aspirin is a master regulator of the hallmarks of cancer. J Cancer Res Clin Oncol. 2019;145:1387–403.

    Article  CAS  PubMed  Google Scholar 

  51. Elwood P, Protty M, Morgan G, Pickering J, Delon C, Watkins J. Aspirin and cancer: biological mechanisms and clinical outcomes. Open Biol. 2022;12:220124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: a review. J Cell Physiol. 2019;234:5683–99.

    Article  CAS  PubMed  Google Scholar 

  53. Pannunzio A, Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: a review of oncology and medicinal chemistry literature. Pharmaceuticals (Basel). 2018;11:101.

    Article  CAS  PubMed  Google Scholar 

  54. Finetti F, Travelli C, Ercoli J, Colombo G, Buoso E, Trabalzini L. Prostaglandin E2 and cancer: insight into tumor progression and immunity. Biology (Basel). 2020;9:434.

    CAS  PubMed  Google Scholar 

  55. Chang CY, Pan PH, Li JR, Ou YC, Wang JD, Liao SL, et al. Aspirin induced glioma apoptosis through noxa upregulation. Int J Mol Sci. 2020;21:4219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pozzoli G, Marei HE, Althani A, Boninsegna A, Casalbore P, Marlier L, et al. Aspirin inhibits cancer stem cells properties and growth of glioblastoma multiforme through Rb1 pathway modulation. J Cell Physiol. 2019;234:15459–71.

    Article  CAS  PubMed  Google Scholar 

  57. Amirian ES, Ostrom QT, Armstrong GN, Lai RK, Gu X, Jacobs DI, et al. Aspirin, NSAIDs, and glioma risk: original data from the glioma international case-control study and a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2019;28:555–62.

    Article  PubMed  Google Scholar 

  58. Kalathil AA, Kumar A, Banik B, Ruiter TA, Pathak RK, Dhar S. New formulation of old aspirin for better delivery. Chem Commun (Camb). 2016;52:140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vasovic V, Banic B, Jakovljevic V, Tomic Z, Milic-Djordjevic V. Effect of aminophylline on aspirin penetration into the central nervous system in rats. Eur J Drug Metab Pharmacokinet. 2008;33:23–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Grant support was provided by the National Science and Technology Council of the Republic of China (Grant Nos. NSTC 110-2628-B-039-006, 112-2628-B-039-004-MY3) and the China Medical University and Hospital (Grant Nos. DMR-112-133, DMR-112-079, CMU112-MF-34, DMR-113-122), the China Medical University Hsinchu Hospital (CMUHCH-DMR-111-007, CMUHCH-DMR-113-010).

Author information

Authors and Affiliations

Authors

Contributions

JYC and STW designed the study, performed the experiments, analysed the data and wrote the paper. HJC, HLW, FJL, KYW and YCH performed the cell or animal studies and analysed the data. DCC and CCW provided essential material and analysed the data. CHH conceptualised the project, designed the study, analysed the data, and wrote the paper. All authors had final approval of the submitted versions.

Corresponding author

Correspondence to Chia-Hung Hsieh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal studies were conducted in accordance with the Institutional Guidelines of China Medical University (Taichung, Taiwan) with the permission of the local Ethical Committee for Animal Experimentation (CMUIACUC- 2016-209). The use of clinical samples was approved by the Institutional Review Board (CMUH108-REC2-062) of China Medical University Hospital (Taichung, Taiwan).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, JY., Wei, ST., Chang, HJ. et al. ABCC4 suppresses glioblastoma progression and recurrence by restraining cGMP-PKG signalling. Br J Cancer 130, 1324–1336 (2024). https://doi.org/10.1038/s41416-024-02581-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02581-2

Search

Quick links