Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Low-dose metronomic cisplatin as an antiangiogenic and anti-inflammatory strategy for cancer

Abstract

Background

Conventional chemotherapy is based on the maximum tolerated dose (MTD) and requires treatment-free intervals to restore normal host cells. MTD chemotherapy may induce angiogenesis or immunosuppressive cell infiltration during treatment-free intervals. Low-dose metronomic (LDM) chemotherapy is defined as frequent administration at lower doses and causes less inflammatory change, whereas MTD chemotherapy induces an inflammatory change. Although several LDM regimens have been applied, LDM cisplatin (CDDP) has been rarely reported. This study addressed the efficacy of LDM CDDP on tumour endothelial cell phenotypic alteration compared to MTD CDDP.

Methods

Tumour growth and metastasis were assessed in bladder cancer-bearing mice treated with LDM or MTD gemcitabine (GEM) and CDDP. To elucidate the therapeutic effects of LDM CDDP, the change of tumour vasculature, tumour-infiltrating immune cells and inflammatory changes were evaluated by histological analysis and mRNA expression in tumour tissues.

Results

Tumour growth and bone metastasis were more suppressed by LDM CDDP + MTD GEM treatment than MTD CDDP + MTD GEM. Myeloid­derived suppressor cell accumulation was reduced by LDM CDDP, whereas inflammatory change was induced in the tumour microenvironment by MTD CDDP.

Conclusion

LDM CDDP does not cause inflammatory change unlike MTD CDDP, suggesting that it is a promising strategy in chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LDM CDDP + MTD GEM treatment reduces tumour growth and bone metastasis.
Fig. 2: LDM CDDP + MTD GEM treatment normalises tumour vasculature.
Fig. 3: LDM CDDP + MTD GEM treatment facilitates M2 macrophage polarisation and reduced MDSC accumulation.
Fig. 4: LDM CDDP + MTD GEM treatment suppresses inflammatory change of the tumour microenvironment enhanced by MTD GEM chemotherapy.
Fig. 5: LDM CDDP monotherapy has therapeutic effect in orthotopic murine tumour model.

Similar content being viewed by others

Data availability

All datasets for this study are available from the corresponding author on request.

References

  1. Vyas D, Laput G, Vyas A. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. OncoTargets Ther. 2014;7:1015–23.

    Article  Google Scholar 

  2. Volk-Draper L, Hall K, Griggs C, Rajput S, Kohio P, DeNardo D, et al. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res. 2014;74:5421–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, et al. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene. 2009;28:4353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mirzaei SA, Dinmohammadi F, Alizadeh A, Elahian F. Inflammatory pathway interactions and cancer multidrug resistance regulation. Life Sci. 2019;235:116825.

    Article  CAS  PubMed  Google Scholar 

  5. Ran S. The role of TLR4 in chemotherapy-driven metastasis. Cancer Res. 2015;75:2405–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.

    Article  CAS  PubMed  Google Scholar 

  7. Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell. 2010;17:135–47.

    Article  CAS  PubMed  Google Scholar 

  8. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210:2851–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sangaletti S, Di Carlo E, Gariboldi S, Miotti S, Cappetti B, Parenza M, et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res. 2008;68:9050–9.

    Article  CAS  PubMed  Google Scholar 

  10. Croix BS, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science. 2000;289:1197–202.

    Article  Google Scholar 

  11. Langenkamp E, Molema G. Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res. 2009;335:205–22.

    Article  CAS  PubMed  Google Scholar 

  12. Ohga N, Ishikawa S, Maishi N, Akiyama K, Hida Y, Kawamoto T, et al. Heterogeneity of tumor endothelial cells: comparison between tumor endothelial cells isolated from high- and low-metastatic tumors. Am J Pathol. 2012;180:1294–307.

    Article  CAS  PubMed  Google Scholar 

  13. Maishi N, Ohba Y, Akiyama K, Ohga N, Hamada JI, Nagao-Kitamoto H, et al. Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep. 2016;6:28039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Akiyama K, Ohga N, Hida Y, Kawamoto T, Sadamoto Y, Ishikawa S, et al. Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment. Am J Pathol. 2012;180:1283–93.

    Article  CAS  PubMed  Google Scholar 

  15. Akiyama K, Maishi N, Ohga N, Hida Y, Ohba Y, Alam MT, et al. Inhibition of multidrug transporter in tumor endothelial cells enhances antiangiogenic effects of low-dose metronomic paclitaxel. Am J Pathol. 2015;185:572–80.

    Article  CAS  PubMed  Google Scholar 

  16. Hida K, Maishi N, Akiyama K, Ohmura-Kakutani H, Torii C, Ohga N, et al. Tumor endothelial cells with high aldehyde dehydrogenase activity show drug resistance. Cancer Sci. 2017;108:2195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kikuchi H, Maishi N, Annan DA, Alam MT, Dawood RIH, Sato M, et al. Chemotherapy-induced IL-8 upregulates MDR1/ABCB1 in tumor blood vessels and results in unfavorable outcome. Cancer Res. 2020;80:2996–3008.

    Article  CAS  PubMed  Google Scholar 

  18. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res. 2003;63:4342–6.

    CAS  PubMed  Google Scholar 

  19. Tongu M, Harashima N, Monma H, Inao T, Yamada T, Kawauchi H, et al. Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother. 2013;62:383–91.

    Article  CAS  PubMed  Google Scholar 

  20. Kerbel RS, Klement G, Pritchard KI, Kamen B. Continuous low-dose anti-angiogenic/ metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol. 2002;13:12–15.

    Article  CAS  PubMed  Google Scholar 

  21. Browder T, Butterfield CE, Kräling BM, Shi B, Marshall B, O’Reilly MS, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000;60:1878–86.

    CAS  PubMed  Google Scholar 

  22. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Investig. 2000;105:1045–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bocci G, Nicolaou KC, Kerbel RS. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res. 2002;62:6938–43.

    CAS  PubMed  Google Scholar 

  24. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4:423–36.

    Article  CAS  PubMed  Google Scholar 

  25. Lutsiak MC, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H. Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005;105:2862–8.

    Article  CAS  PubMed  Google Scholar 

  26. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56:641–8.

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka H, Matsushima H, Nishibu A, Clausen BE, Takashima A. Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res. 2009;69:6987–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hasnis E, Alishekevitz D, Gingis-Veltski S, Bril R, Fremder E, Voloshin T, et al. Anti-Bv8 antibody and metronomic gemcitabine improve pancreatic adenocarcinoma treatment outcome following weekly gemcitabine therapy. Neoplasia. 2014;16:501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan TS, Hsu CC, Pai VC, Liao WY, Huang SS, Tan KT, et al. Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells. J Exp Med. 2016;213:2967–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang CL, Hsu YT, Wu CC, Lai YZ, Wang C, Yang YC, et al. Dose-dense chemotherapy improves mechanisms of antitumor immune response. Cancer Res. 2013;73:119–27.

    Article  CAS  PubMed  Google Scholar 

  31. Ju X, Zhang H, Zhou Z, Chen M, Wang Q. Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-ɑ signaling. Exp Cell Res. 2020;396:112315.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, Liu Y, Yan Z, Yang H, Sun W, Yao Y, et al. IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J ImmunoTher Cancer. 2020;8:e000285.

    Article  PubMed  Google Scholar 

  33. Häuselmann I, Roblek M, Protsyuk D, Huck V, Knopfova L, Grässle S, et al. Monocyte induction of E-selectin–mediated endothelial activation releases ve-cadherin junctions to promote tumor cell extravasation in the metastasis cascade. Cancer Res. 2016;76:5302–12.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kerbel RS, Shaked Y. The potential clinical promise of ‘multimodality’ metronomic chemotherapy revealed by preclinical studies of metastatic disease. Cancer Lett. 2017;400:293–304.

    Article  CAS  PubMed  Google Scholar 

  35. Cazzaniga ME, Biganzoli L, Cortesi L, De Placido S, Donadio M, Fabi A, et al. Treating advanced breast cancer with metronomic chemotherapy: what is known, what is new and what is the future? OncoTargets Ther. 2019;12:2989–97.

    Article  CAS  Google Scholar 

  36. Von Der Maase H, Hansen SW, Roberts JT, Dogliotti L, Oliver T, Moore MJ, et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol. 2000;18:3068–77.

    Article  PubMed  Google Scholar 

  37. Matsumoto R, Tsuda M, Yoshida K, Tanino M, Kimura T, Nishihara H, et al. Aldo-keto reductase 1C1 induced by interleukin-1β mediates the invasive potential and drug resistance of metastatic bladder cancer cells. Sci Rep. 2016;6:34625.

    Article  CAS  PubMed  Google Scholar 

  38. Torii C, Hida Y, Shindoh M, Akiyama K, Ohga N, Maishi N, et al. Vasohibin-1 as a Novel prognostic factor for head and neck squamous cell carcinoma. Anticancer Res. 2017;37:1219–25.

    Article  CAS  PubMed  Google Scholar 

  39. Mpekris F, Baish JW, Stylianopoulos T, Jain RK. Role of vascular normalization in benefit from metronomic chemotherapy. Proc Natl Acad Sci USA. 2017;114:1994–9.

    Article  CAS  PubMed  Google Scholar 

  40. Doloff JC, Khan N, Ma J, Demidenko E, Swartz HM, Jounaidi Y. Increased tumor oxygenation and drug uptake during anti-angiogenic weekly low dose cyclophosphamide enhances the anti-tumor effect of weekly tirapazamine (supplementry material). Curr Cancer Drug Targets. 2009;9:777–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cham KKY, Baker JHE, Takhar KS, Flexman JA, Wong MQ, Owen DA, et al. Metronomic gemcitabine suppresses tumour growth, improves perfusion, and reduces hypoxia in human pancreatic ductal adenocarcinoma. Br J Cancer. 2010;103:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Bock K, Cauwenberghs S, Carmeliet P. Vessel abnormalization: another hallmark of cancer?Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev. 2011;21:73–9.

    Article  PubMed  Google Scholar 

  43. Shen FZ, Wang J, Liang J, Mu K, Hou JY, Wang YT. Low-dose metronomic chemotherapy with cisplatin: can it suppress angiogenesis in H22 hepatocarcinoma cells? Int J Exp Pathol. 2010;91:10–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koizumi K, Tsutsumi Y, Yoshioka Y, Watanabe M, Okamoto T, Mukai Y, et al. Anti-angiogenic effects of dimethyl sulfoxide on endothelial cells. Biol Pharm Bull. 2003;26:1295–8.

    Article  CAS  PubMed  Google Scholar 

  45. Loeffler M, Krüger JA, Reisfeld RA. Immunostimulatory effects of low-dose cyclophosphamide are controlled by inducible nitric oxide synthase. Cancer Res. 2005;65:5027–30.

    Article  CAS  PubMed  Google Scholar 

  46. Liu JY, Wu Y, Zhang XS, Yang JL, Li HL, Mao YQ, et al. Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother. 2007;56:1597–604.

    Article  CAS  PubMed  Google Scholar 

  47. Wada S, Yoshimura K, Hipkiss EL, Harris TJ, Yen HR, Goldberg MV, et al. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res. 2009;69:4309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34:336–44.

    Article  CAS  PubMed  Google Scholar 

  49. Roux S, Apetoh L, Chalmin F, Ladoire S, Mignot G, Puig PE, et al. CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer. J Clin Investig. 2008;118:3751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peereboom DM, Alban TJ, Grabowski MM, Alvarado AG, Otvos B, Bayik D, et al. Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight. 2019;4:e130748.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huang X, Cui S, Shu Y. Cisplatin selectively downregulated the frequency and immunoinhibitory function of myeloid-derived suppressor cells in a murine B16 melanoma model. Immunol Res. 2016;64:160–70.

    Article  CAS  PubMed  Google Scholar 

  52. Sawant A, Ponnazhagan S. Myeloid-derived suppressor cells as osteoclast progenitors: a novel target for controlling osteolytic bone metastasis. Cancer Res. 2013;73:4606–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zenitani M, Nojiri T, Hosoda H, Kimura T, Uehara S, Miyazato M, et al. Chemotherapy can promote liver metastasis by enhancing metastatic niche formation in mice. J Surg Res. 2018;224:50–7.

    Article  CAS  PubMed  Google Scholar 

  54. Karagiannis GS, Condeelis JS, Oktay MH. Chemotherapy-induced metastasis: molecular mechanisms, clinical manifestations, therapeutic interventions. Cancer Res. 2019;79:4567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. S Tanaka and M Tsuda for providing the UMUC3 and tdTomato-Luc2 gene-transfected UMUC3 cells. We also thank Ms. M Sasaki, Ms. Y Suzuki, and Ms. T Takahashi for their technical assistance with the experiments.

Funding

This research was funded by JSPS Grants-in-Aid for Scientific Research on Integrated Analysis and Regulation of Cellular Diversity Innovative Areas to KH (JP18H05092); JSPS Grants-in-Aid for Scientific Research to NM (JP18K09715 and JP21K10107), HK (JP19K18549), YH (JP18H02891 and JP21H03019) and KH (JP18H02996 and JP21H04840); and Grants from Japan Agency for Medical Research and Development to NM (JP18ck0106198h0003) and KH (JP20ck0106406h0003).

Author information

Authors and Affiliations

Authors

Contributions

KY and NM conceived of the study and its design. HK, CL, LY, ZJ, MS, RT and KI provided the study data. HK and NM completed the statistical analyses. HK, NM, KH and YH interpreted the results. HK drafted the manuscript. KY, MN, YH and NS critically reviewed the draft manuscript and approved the final version.

Corresponding author

Correspondence to Kyoko Hida.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All procedures for animal care and experimentation adhered to institutional guidelines and were approved by the Ethical Committee for Experimental Animal Care of Hokkaido University (18-0050).

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, H., Maishi, N., Yu, L. et al. Low-dose metronomic cisplatin as an antiangiogenic and anti-inflammatory strategy for cancer. Br J Cancer 130, 336–345 (2024). https://doi.org/10.1038/s41416-023-02498-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02498-2

Search

Quick links