Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The prognostic impact of peritoneal tumour DNA in gastrointestinal and gynaecological malignancies: a systematic review

Abstract

Peritoneal metastases from various abdominal cancer types are common and carry poor prognosis. The presence of peritoneal disease upstages cancer diagnosis and alters disease trajectory and treatment pathway in many cancer types. Therefore, accurate and timely detection of peritoneal disease is crucial. The current practice of diagnostic laparoscopy and peritoneal lavage cytology (PLC) in detecting peritoneal disease has variable sensitivity. The significant proportion of peritoneal recurrence seen during follow-up in patients where initial PLC was negative indicates the ongoing need for a better diagnostic tool for detecting clinically occult peritoneal disease, especially peritoneal micro-metastases. Advancement in liquid biopsy has allowed the development and use of peritoneal tumour DNA (ptDNA) as a cancer-specific biomarker within the peritoneum, and the presence of ptDNA may be a surrogate marker for early peritoneal metastases. A growing body of literature on ptDNA in different cancer types portends promising results. Here, we conduct a systematic review to evaluate the prognostic impact of ptDNA in various cancer types and discuss its potential future clinical applications, with a focus on gastrointestinal and gynaecological malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Kus T, Kose F, Aktas G, Arslan UY, Sedef AM, Cinkir HY, et al. Prediction of peritoneal recurrence in patients with gastric cancer: a multicenter study. J Gastrointest Cancer. 2021;52:634–42.

    Article  PubMed  Google Scholar 

  2. Suenaga M, Fujii T, Yamada S, Hayashi M, Shinjo K, Takami H, et al. Peritoneal lavage tumor DNA as a novel biomarker for predicting peritoneal recurrence in pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2021;28:2277–86.

    Article  PubMed  Google Scholar 

  3. López-Rojo I, Olmedillas-López S, Villarejo Campos P, Domínguez Prieto V, Barambio Buendía J, Cortés, et al. Liquid biopsy in peritoneal fluid and plasma as a prognostic factor in advanced colorectal and appendiceal tumors after complete cytoreduction and hyperthermic intraperitoneal chemotherapy. Ther Adv Med Oncol. 2020;12:1758835920981351.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Swisher EM, Wollan M, Mahtani SM, Willner JB, Garcia R, Goff BA, et al. Tumor-specific p53 sequences in blood and peritoneal fluid of women with epithelial ovarian cancer. Am J Obstet Gynecol. 2005;193:662–7.

    Article  CAS  PubMed  Google Scholar 

  5. Cho JH, Kim SS. Peritoneal carcinomatosis and its mimics: review of CT findings for differential diagnosis. J Belg Soc Radiol. 2020;104:8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zeppernick F, Meinhold-Heerlein I. The new FIGO staging system for ovarian, fallopian tube, and primary peritoneal cancer. Arch Gynecol Obstet. 2014;290:839–42.

    Article  CAS  PubMed  Google Scholar 

  7. Leake PA, Cardoso R, Seevaratnam R, Lourenco L, Helyer L, Mahar A, et al. A systematic review of the accuracy and utility of peritoneal cytology in patients with gastric cancer. Gastric Cancer. 2012;15:S27–37.

    Article  PubMed  Google Scholar 

  8. Nomoto S, Nakao A, Kasai Y, Inoue S, Harada A, Nonami T, et al. Peritoneal washing cytology combined with immunocytochemical staining and detecting mutant K-ras in pancreatic cancer: comparison of the sensitivity and availability of various methods. Pancreas. 1997;14:126–32.

    Article  CAS  PubMed  Google Scholar 

  9. Zuna RE, Behrens A. Peritoneal washing cytology in gynecologic cancers: long-term follow-up of 355 patients. J Natl Cancer Inst. 1996;88:980–7.

    Article  CAS  PubMed  Google Scholar 

  10. Razenberg LG, van Gestel YR, Creemers GJ, Verwaal VJ, Lemmens VE, de Hingh IH. Trends in cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for the treatment of synchronous peritoneal carcinomatosis of colorectal origin in the Netherlands. Eur J Surg Oncol. 2015;41:466–71.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Batran SE, Homann N, Pauligk C, Goetze TO, Meiler J, Kasper S, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet. 2019;393:1948–57.

    Article  PubMed  Google Scholar 

  12. Kelly RJ, Ajani JA, Kuzdzal J, Zander T, Van Cutsem E, Piessen G, et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N Engl J Med. 2021;384:1191–203.

    Article  CAS  PubMed  Google Scholar 

  13. Nakauchi M, Vos EL, Carr RA, Barbetta A, Tang LH, Gonen M, et al. Distinct differences in gastroesophageal junction and gastric adenocarcinoma in 2194 patients: in memory of Rebecca A. Carr, February 24, 1988-January 19, 2021. Ann Surg. 2023;277:629–36.

    Article  PubMed  Google Scholar 

  14. Siravegna G, Mussolin B, Venesio T, Marsoni S, Seoane J, Dive C, et al. How liquid biopsies can change clinical practice in oncology. Ann Oncol. 2019;30:1580–90.

    Article  CAS  PubMed  Google Scholar 

  15. Tivey A, Church M, Rothwell D, Dive C, Cook N. Circulating tumour DNA—looking beyond the blood. Nat Rev Clin Oncol. 2022;19:600–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lam RCT, Johnson D, Lam G, Li MLY, Wong JWL, Lam WKJ, et al. Clinical applications of circulating tumor-derived DNA in the management of gastrointestinal cancers—current evidence and future directions. Front Oncol. 2022;12:970242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal peritoneal carcinomatosis: role of the peritoneum. World J Gastroenterol. 2016;22:7692–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73:712–6.

    Article  PubMed  Google Scholar 

  20. Zhou S, Xu B, Qi L, Zhu D, Liu B, Wei J. Next-generation sequencing reveals mutational accordance between cell-free DNA from plasma, malignant pleural effusion and ascites and directs targeted therapy in a gastric cancer patient. Cancer Biol Ther. 2019;20:15–20.

    Article  CAS  PubMed  Google Scholar 

  21. Ju HY, Ho JY, Kang J, Hur SY, Kim S, Choi YJ, et al. Whole-exome sequencing reveals clinical potential of circulating tumor DNA from peritoneal fluid and plasma in endometrial cancer. Cancers. 2022;14:2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayo-de-Las-Casas C, Velasco A, Sanchez D, Martínez-Bueno A, Garzón-Ibáñez M, Gatius S, et al. Detection of somatic mutations in peritoneal lavages and plasma of endometrial cancer patients: a proof-of-concept study. Int J Cancer. 2020;147:277–84.

    Article  CAS  PubMed  Google Scholar 

  23. Werner B, Yuwono N, Duggan J, Liu D, David C, Srirangan S, et al. Cell-free DNA is abundant in ascites and represents a liquid biopsy of ovarian cancer. Gynecol Oncol. 2021;162:720–7.

    Article  CAS  PubMed  Google Scholar 

  24. Han MR, Lee SH, Park JY, Hong H, Ho JY, Hur SY, et al. Clinical implications of circulating tumor DNA from ascites and serial plasma in ovarian cancer. Cancer Res. Treat. 2020;52:779–788.

  25. Barquín M, Maximiano C, Pérez-Barrios C, Sanchez-Herrero E, Soriano M, Colmena M, et al. Peritoneal washing is an adequate source for somatic BRCA1/2 mutation testing in ovarian malignancies. Pathol Res Pr. 2019;215:392–4.

    Article  Google Scholar 

  26. Krimmel JD, Schmitt MW, Harrell MI, Agnew KJ, Kennedy SR, Emond MJ, et al. Ultra-deep sequencing detects ovarian cancer cells in peritoneal fluid and reveals somatic TP53 mutations in noncancerous tissues. Proc Natl Acad Sci USA. 2016;113:6005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parrella P, Zangen R, Sidransky D, Nicol T. Molecular analysis of peritoneal fluid in ovarian cancer patients. Mod Pathol. 2003;16:636–40.

    Article  PubMed  Google Scholar 

  28. Dokianakis DN, Varras MN, Papaefthimiou M, Apostolopoulou J, Simiakaki H, Diakomanolis E, et al. Ras gene activation in malignant cells of human ovarian carcinoma peritoneal fluids. Clin Exp Metastasis. 1999;17:293–7.

    Article  CAS  PubMed  Google Scholar 

  29. Nozaki T, Sakamoto I, Kagami K, Amemiya K, Hirotsu Y, Mochizuki H, et al. Molecular analysis of ascitic fluid cytology reflects genetic changes of malignancies of the ovary equivalent to surgically resected specimens. Cancer Cytopathol. 2022;130:640–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hickey KP, Boyle KP, Jepps HM, Andrew AC, Buxton EJ, Burns PA. Molecular detection of tumour DNA in serum and peritoneal fluid from ovarian cancer patients. Br J Cancer. 1999;80:1803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ibanez de Caceres I, Battagli C, Esteller M, Herman JG, Dulaimi E, Edelson MI, et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res. 2004;64:6476–81.

    Article  PubMed  Google Scholar 

  32. van’t Erve I, Rovers KP, Constantinides A, Bolhuis K, Wassenaar ECE, Lurvink RJ, et al. Detection of tumor-derived cell-free DNA from colorectal cancer peritoneal metastases in plasma and peritoneal fluid. J Pathol Clin Res. 2021;7:203–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kamiyama H, Noda H, Takata O, Md YK, Konishi F. Promoter hypermethylation of tumor-related genes in peritoneal lavage and the prognosis of patients with colorectal cancer. J Surg Oncol. 2009;100:69–74.

    Article  CAS  PubMed  Google Scholar 

  34. Leick KM, Kazarian AG, Rajput M, Tomanek-Chalkley A, Miller A, Shrader HR, et al. Peritoneal cell-free tumor DNA as biomarker for peritoneal surface malignancies. Ann Surg Oncol. 2020;27:5065–71.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yuan Z, Chen W, Liu D, Qin Q, Grady WM, Fichera A, et al. Peritoneal cell-free DNA as a sensitive biomarker for detection of peritoneal metastasis in colorectal cancer: a prospective diagnostic study: a prospective diagnostic study. Clin Epigenet. 2023;15:65.

    Article  CAS  Google Scholar 

  36. Chiba K, Hata T, Mizuma M, Masuda K, Aoki S, Takadate T, et al. Impact of tumor-derived DNA testing in peritoneal lavage of pancreatic cancer patients with and without occult intra-abdominal metastases. Ann Surg Oncol. 2022;29:2685–97.

    Article  PubMed  Google Scholar 

  37. Yonkus JA, Alva-Ruiz R, Abdelrahman AM, Leiting JL, Schneider AR, Grotz TE, et al. Molecular peritoneal staging for pancreatic ductal adenocarcinoma using mutant KRAS droplet-digital polymerase chain reaction: results of a prospective clinical trial. J Am Coll Surg. 2021;233:73-+.

    Article  PubMed  Google Scholar 

  38. Hiraki M, Kitajima Y, Sato S, Nakamura J, Hashiguchi K, Noshiro H, et al. Aberrant gene methylation in the peritoneal fluid is a risk factor predicting peritoneal recurrence in gastric cancer. World J Gastroenterol. 2010;16:330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hiraki M, Kitajima Y, Koga Y, Tanaka T, Nakamura J, Hashiguchi K, et al. Aberrant gene methylation is a biomarker for the detection of cancer cells in peritoneal wash samples from advanced gastric cancer patients. Ann Surg Oncol. 2011;18:3013–9.

    Article  PubMed  Google Scholar 

  40. Yu QM, Wang XB, Luo J, Wang S, Fang XH, Yu JL, et al. CDH1 methylation in preoperative peritoneal washes is an independent prognostic factor for gastric cancer. J Surg Oncol. 2012;106:765–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ushiku H, Yamashita K, Ema A, Minatani N, Kikuchi M, Kojo K, et al. DNA diagnosis of peritoneal fluid cytology test by CDO1 promoter DNA hypermethylation in gastric cancer. Gastric Cancer. 2017;20:784–92.

    Article  CAS  PubMed  Google Scholar 

  42. Harada H, Soeno T, Nishizawa N, Washio M, Sakuraya M, Ushiku H, et al. Prospective study to validate the clinical utility of DNA diagnosis of peritoneal fluid cytology test in gastric cancer. Cancer Sci. 2021;112:1644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yukawa N, Yamada T, Aoyama T, Woo T, Ueda K, Mastuda A, et al. Tumor DNA in Peritoneal lavage as a novel biomarker for predicting peritoneal recurrence in patients with gastric cancer. Anticancer Res. 2023;43:2069–76.

    Article  CAS  PubMed  Google Scholar 

  44. Yamashita K, Kuba T, Shinoda H, Takahashi E, Okayasu I. Detection of K-ras point mutations in the supernatants of peritoneal and pleural effusions for diagnosis complementary to cytologic examination. Am J Clin Pathol. 1998;109:704–11.

    Article  CAS  PubMed  Google Scholar 

  45. Jayne D. Molecular biology of peritoneal carcinomatosis. Cancer Treat Res. 2007;134:21–33.

    CAS  PubMed  Google Scholar 

  46. Yonemura Y, Ishibashi H, Mizumoto A, Tukiyama G, Liu Y, Wakama S, et al. The development of peritoneal metastasis from gastric cancer and rationale of treatment according to the mechanism. J Clin Med. 2022;11:458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Virgilio E, Giarnieri E, Giovagnoli MR, Montagnini M, Proietti A, D’Urso R, et al. Gastric cancer cells in peritoneal lavage fluid: a systematic review comparing cytological with molecular detection for diagnosis of peritoneal metastases and prediction of peritoneal recurrences. Anticancer Res. 2018;38:1255–62.

    CAS  PubMed  Google Scholar 

  48. Wu HT, Ji HN, Yang WH, Zhang M, Guo YF, Li BK, et al. Liquid biopsy using ascitic fluid and pleural effusion supernatants for genomic profiling in gastrointestinal and lung cancers. BMC Cancer. 2022;22:1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Husain H, Nykin D, Bui N, Quan D, Gomez G, Woodward B, et al. Cell-Free DNA from ascites and pleural effusions: molecular insights into genomic aberrations and disease biology. Mol Cancer Ther. 2017;16:948–55.

    Article  CAS  PubMed  Google Scholar 

  50. Nelson AC, Boone J, Cartwright D, Thyagarajan B, Kincaid R, Lambert AP, et al. Optimal detection of clinically relevant mutations in colorectal carcinoma: sample pooling overcomes intra-tumoral heterogeneity. Mod Pathol. 2018;31:343–9.

    Article  CAS  PubMed  Google Scholar 

  51. Jung M, Putzer S, Gevensleben H, Meller S, Kristiansen G, Dietrich D. Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant, and malignant ascites. Clinical Epigenet. 2016;8:1–13.

  52. Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma, 15th Edition. Oxford, UK: Kanehara-Shuppan; 2017.

  53. Chang HW, Ali SZ, Cho SKR, Kurman RJ, Shih IM. Detection of allelic imbalance in ascitic supernatant by digital single nucleotide polymorphism analysis. Clin Cancer Res. 2002;8:2580–5.

    CAS  PubMed  Google Scholar 

  54. Pu XL, Li ZY, Wang XY, Jiang H. Ascites and serial plasma circulating tumor DNA for predicting the effectiveness of hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis. Front Oncol. 2022;12:791418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. David S Liu received research funding from the North Eastern Melbourne Integrated Cancer Service (Service Improvement Grant), Peter MacCallum Cancer Foundation (Discovery Partner Fellowship), Austin Medical Research Foundation (Grant-In-Aid), and the Royal Australasian College of Surgeons (Paul Mackay Bolton Grant for Cancer Research).

Author information

Authors and Affiliations

Authors

Contributions

ZA performed the systematic review search, drafted and revised the manuscript; SW performed the systematic review search and revised the manuscript; JT, NT, NC and DL supervised the systematic review search and revised the manuscript.

Corresponding author

Correspondence to Zexi Allan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allan, Z., Witts, S., Tie, J. et al. The prognostic impact of peritoneal tumour DNA in gastrointestinal and gynaecological malignancies: a systematic review. Br J Cancer 129, 1717–1726 (2023). https://doi.org/10.1038/s41416-023-02424-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02424-6

Search

Quick links