Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive analysis of the lncRNAs-related immune gene signatures and their correlation with immunotherapy in lung adenocarcinoma

Abstract

Background

Long non-coding RNAs (lncRNAs)-related immune genes (lrRIGs) play a crucial role in the development and progression of lung adenocarcinoma (LUAD). However, reliable prognostic signatures based on lrRIGs have not yet been identified.

Methods

We screened lrRIGs associated with the prognosis of LUAD using The Cancer Genome Atlas (TCGA) database and then established a novel prognostic nine-gene signature composed of CD79A, INHA, SHC3, LIFR, TNFRSF11A, GPI, F2RL1, SEMA7A and WFDC2 through bioinformatic approaches. A risk score derived from this gene signature was used to divide LUAD patients into the low- and high-risk groups. The latter was confirmed to have markedly worse overall survival (O.S.). A nomogram was developed using the risk score and other independent prognostic elements, demonstrating excellent performance in predicting the O.S. rate of LUAD patients.

Results

We observed that the infiltration of diverse immune cell subtypes and response to immunotherapy and chemotherapy significantly differed between the low- and high-risk groups.

Conclusions

Overall, stratification based on this gene signature could be used to guide better therapeutic management and improve outcomes for LUAD patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identifying prognostic risk genes and analyzing their expression based on differentially expressed lncRNA-related immune genes (DE-lrRIGs) using the TCGA_LUAD database.
Fig. 2: Prognostic performance of the lrRIGs signature.
Fig. 3: Association between indicated variables and prognosis of patients with LUAD.
Fig. 4: Comparison of immune microenvironments between high- and low-risk groups defined by the 9-gene signature.
Fig. 5: Analysis of immune checkpoints, HLA and mismatch repair genes expression and TMB.
Fig. 6: Predicted patients' response in TCGA database to targeted therapies and standard chemotherapies in different risk groups.
Fig. 7: To investigate the possible mechanism of prognostic signature gene GPI affecting the prognosis of LUAD patients.

Similar content being viewed by others

Data availability

Relevant research data have been presented in the text. All data will be provided upon request if necessary.

References

  1. Nasim F, Sabath BF, Eapen GA. Lung cancer. Med Clin North Am. 2019;103:463–73. https://doi.org/10.1016/j.mcna.2018.12.006.

    Article  PubMed  Google Scholar 

  2. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev. 2016;25:16–27. https://doi.org/10.1158/1055-9965.Epi-15-0578.

    Article  PubMed  Google Scholar 

  3. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28. https://doi.org/10.1056/NEJMoa1501824.

    Article  PubMed  Google Scholar 

  4. Mazza F, Ferrari E, Maineri P, Dozin B, Ratto GB. Pleural lavage cytology predicts recurrence and survival, even in early non-small cell lung cancer. Surg Today. 2015;45:322–8. https://doi.org/10.1007/s00595-014-0915-3.

    Article  PubMed  Google Scholar 

  5. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71. https://doi.org/10.1038/nrc3611.

    Article  CAS  PubMed  Google Scholar 

  6. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84. https://doi.org/10.1101/gad.314617.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. https://doi.org/10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lussier DM, O'Neill L, Nieves LM, McAfee MS, Holechek SA, Collins AW, et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J Immunother. 2015;38:96–106. https://doi.org/10.1097/cji.0000000000000065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gnjatic S, Bronte V, Brunet LR, Butler MO, Disis ML, Galon J, et al. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer. 2017;5:44 https://doi.org/10.1186/s40425-017-0243-4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Ma X, Ma Z, Ma Y, Wang J, Cao B. Research progress of biomarkers for immune checkpoint inhibitors on digestive system cancers. Front Immunol. 2022;13:810539 https://doi.org/10.3389/fimmu.2022.810539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118. https://doi.org/10.1038/s41580-020-00315-9.

    Article  CAS  PubMed  Google Scholar 

  12. Mathy NW, Chen XM. Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J Biol Chem. 2017;292:12375–82. https://doi.org/10.1074/jbc.R116.760884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol. 2017;18:962–72. https://doi.org/10.1038/ni.3771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharma S, Findlay GM, Bandukwala HS, Oberdoerffer S, Baust B, Li Z, et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci USA. 2011;108:11381–6. https://doi.org/10.1073/pnas.1019711108.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gao Y, Wang T, Li Y, Zhang Y, Yang R. Lnc-chop promotes immunosuppressive function of myeloid-derived suppressor cells in tumor and inflammatory environments. J Immunol. 2018;200:2603–14. https://doi.org/10.4049/jimmunol.1701721.

    Article  CAS  PubMed  Google Scholar 

  16. Huang D, Chen J, Yang L, Ouyang Q, Li J, Lao L, et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol. 2018;19:1112–25. https://doi.org/10.1038/s41590-018-0207-y.

    Article  CAS  PubMed  Google Scholar 

  17. Wang CJ, Zhu CC, Xu J, Wang M, Zhao WY, Liu Q, et al. The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Mol Cancer. 2019;18:115 https://doi.org/10.1186/s12943-019-1032-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer. 2021;20:24 https://doi.org/10.1186/s12943-021-01313-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pi YN, Qi WC, Xia BR, Lou G, Jin WL. Long non-coding RNAs in the tumor immune microenvironment: biological properties and therapeutic potential. Front Immunol. 2021;12:697083 https://doi.org/10.3389/fimmu.2021.697083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Jiang T, Zhou W, Li J, Li X, Wang Q, et al. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat Commun. 2020;11:1000 https://doi.org/10.1038/s41467-020-14802-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15:R47 https://doi.org/10.1186/gb-2014-15-3-r47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang HJ, Chang WJ, Jia CY, Qiao L, Zhou J, Chen Q, et al. Destrin contributes to lung adenocarcinoma progression by activating Wnt/β-catenin signaling pathway. Mol Cancer Res. 2020;18:1789–802. https://doi.org/10.1158/1541-7786.Mcr-20-0187.

    Article  CAS  PubMed  Google Scholar 

  23. Sun S, Guo W, Wang Z, Wang X, Zhang G, Zhang H, et al. Development and validation of an immune-related prognostic signature in lung adenocarcinoma. Cancer Med. 2020;9:5960–75. https://doi.org/10.1002/cam4.3240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao Y, Lu X, Li Y, Fu J, Li H, Li X, et al. Identification of a six-gene metabolic signature predicting overall survival for patients with lung adenocarcinoma. PeerJ. 2020;8:e10320 https://doi.org/10.7717/peerj.10320.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Zhang Z, Yu Z. Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma. J Transl Med. 2019;17:423 https://doi.org/10.1186/s12967-019-02173-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li S, Xuan Y, Gao B, Sun X, Miao S, Lu T, et al. Identification of an eight-gene prognostic signature for lung adenocarcinoma. Cancer Manag Res. 2018;10:3383–92. https://doi.org/10.2147/cmar.S173941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol. 2021;18:112–27. https://doi.org/10.1038/s41423-020-00572-w.

    Article  CAS  PubMed  Google Scholar 

  28. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9:eaah3560 https://doi.org/10.1126/scitranslmed.aah3560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kikuchi E, Yamazaki K, Torigoe T, Cho Y, Miyamoto M, Oizumi S, et al. HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer. Cancer SCI. 2007;98:1424–30. https://doi.org/10.1111/j.1349-7006.2007.00558.

    Article  CAS  PubMed  Google Scholar 

  30. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8. https://doi.org/10.1126/science.aaa1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377:2500–1. https://doi.org/10.1056/NEJMc1713444.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99. https://doi.org/10.1056/NEJMoa1406498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell. 2017;171:1259–71. https://doi.org/10.1016/j.cell.2017.10.001.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE. 2014;9:e107468 https://doi.org/10.1371/journal.pone.0107468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han J, Deng X, Sun R, Luo M, Liang M, Gu B, et al. GPI is a prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. Front Oncol. 2021;11:752642 https://doi.org/10.3389/fonc.2021.752642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Veen M, Matas-Rico E, van de Wetering K, Leyton-Puig D, Kedziora KM, De Lorenzi V, et al. Negative regulation of urokinase receptor activity by a GPI-specific phospholipase C in breast cancer cells. eLife 2017;6. https://doi.org/10.7554/eLife.23649.

  37. Wu ST, Liu B, Ai ZZ, Hong ZC, You PT, Wu HZ, et al. Esculetin inhibits cancer cell glycolysis by binding tumor PGK2, GPD2, and GPI. Front Pharmacol. 2020;11:379 https://doi.org/10.3389/fphar.2020.00379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luo CT, Liao W, Dadi S, Toure A, Li MO. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532–6. https://doi.org/10.1038/nature16486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol. 2003;3:371–7. https://doi.org/10.1016/s1471-4892(03)00071-7.

    Article  CAS  PubMed  Google Scholar 

  40. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84. https://doi.org/10.1016/j.cell.2006.01.016.

    Article  CAS  PubMed  Google Scholar 

  41. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22. https://doi.org/10.1016/j.ccr.2007.05.008.

    Article  CAS  PubMed  Google Scholar 

  42. Shen S, Wang G, Zhang R, Zhao Y, Yu H, Wei Y, et al. Development and validation of an immune gene-set based prognostic signature in ovarian cancer. EBioMedicine. 2019;40:318–26. https://doi.org/10.1016/j.ebiom.2018.12.054.

    Article  PubMed  Google Scholar 

  43. Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol. 2007;8:R157 https://doi.org/10.1186/gb-2007-8-8-r157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin A, Hu Q, Li C, Xing Z, Ma G, Wang C, et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P(3) to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol. 2017;19:238–51. https://doi.org/10.1038/ncb3473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sang LJ, Ju HQ, Liu GP, Tian T, Ma GL, Lu YX, et al. LncRNA CamK-A regulates Ca(2+)-signaling-mediated tumor microenvironment remodeling. Mol Cell. 2018;72:601 https://doi.org/10.1016/j.molcel.2018.10.024.

    Article  CAS  PubMed  Google Scholar 

  46. Jin G, Sun J, Isaacs SD, Wiley KE, Kim ST, Chu LW, et al. Human polymorphisms at long non-coding RNAs (lncRNAs) and association with prostate cancer risk. Carcinogenesis. 2011;32:1655–9. https://doi.org/10.1093/carcin/bgr187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li L, Jia F, Bai P, Liang Y, Sun R, Yuan F, et al. Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of gastric cancer. Tumour Biol. 2016;37:299–303. https://doi.org/10.1007/s13277-015-3750-2.

    Article  CAS  PubMed  Google Scholar 

  48. Li L, Wang Y, Song G, Zhang X, Gao S, Liu H. HOX cluster-embedded antisense long non-coding RNAs in lung cancer. Cancer Lett. 2019;450:14–21. https://doi.org/10.1016/j.canlet.2019.02.036.

    Article  CAS  PubMed  Google Scholar 

  49. Teng C, Huang G, Luo Y, Pan Y, Wang H, Liao X, et al. Differential long noncoding RNAs expression in cancer-associated fibroblasts of non-small-cell lung cancer. Pharmacogenomics. 2019;20:143–53. https://doi.org/10.2217/pgs-2018-0102.

    Article  CAS  PubMed  Google Scholar 

  50. Hu Q, Ye Y, Chan LC, Li Y, Liang K, Lin A, et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol. 2019;20:835–51. https://doi.org/10.1038/s41590-019-0400-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou WY, Zhang MM, Liu C, Kang Y, Wang JO, Yang XH. Long noncoding RNA LINC00473 drives the progression of pancreatic cancer via upregulating programmed death-ligand 1 by sponging microRNA-195-5p. J Cell Physiol. 2019;234:23176–89. https://doi.org/10.1002/jcp.28884.

    Article  CAS  PubMed  Google Scholar 

  52. Mason DY, Cordell JL, Brown MH, Borst J, Jones M, Pulford K, et al. CD79a: a novel marker for B-cell neoplasms in routinely processed tissue samples. Blood. 1995;86:1453–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zomas AP, Matutes E, Morilla R, Owusu-Ankomah K, Seon BK, Catovsky D. Expression of the immunoglobulin-associated protein B29 in B cell disorders with the monoclonal antibody SN8 (CD79b). Leukemia. 1996;10:1966–70.

    CAS  PubMed  Google Scholar 

  54. Viswanadhapalli S, Dileep KV, Zhang KYJ, Nair HB, Vadlamudi RK. Targeting LIF/LIFR signaling in cancer. Genes Dis. 2022;9:973–80. https://doi.org/10.1016/j.gendis.2021.04.003.

    Article  CAS  PubMed  Google Scholar 

  55. Pusapati RV, Daemen A, Wilson C, Sandoval W, Gao M, Haley B, et al. mTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells. Cancer Cell. 2016;29:548–62. https://doi.org/10.1016/j.ccell.2016.02.018.

    Article  CAS  PubMed  Google Scholar 

  56. Liotta LA, Mandler R, Murano G, Katz DA, Gordon RK, Chiang PK, et al. Tumor cell autocrine motility factor. Proc Natl Acad Sci USA. 1986;83:3302–6. https://doi.org/10.1073/pnas.83.10.3302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Song Y, Wang L, Zhang L, Huang D. The involvement of semaphorin 7A in tumorigenic and immunoinflammatory regulation. J Cell Physiol. 2021;236:6235–48. https://doi.org/10.1002/jcp.30340.

    Article  CAS  PubMed  Google Scholar 

  58. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  59. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76. https://doi.org/10.1016/j.cell.2017.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the contributions from the TCGA, GEO, innateDB, GDSC and GSEA databases. This work was supported by the National Natural Science Foundation of China (Nos. 81372147, 81803575, 31902287), Henan University support grant CX3070A0780502, the Key Science and Technology Research and Development and Promotion Special Project of Henan Province (No. 232102311205), and the Key R&D and promotion projects of Kaifeng (No. 2203008).

Author information

Authors and Affiliations

Authors

Contributions

FL conceived and designed this article. ZY, JZ, TY, WT, and XZ participated in the experimental data collection; SJ provided technical assistance; FL drafted the manuscript; ZR revised the study draft. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Zhiguang Ren or Feng Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The studies involving human participants were reviewed and approved by the Ethics Committee of Medical School of Henan University, China (HUSOM-2018-282). Informed consent was obtained from all subjects involved in the study.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

Cell Culture and Stable Transfection of shRNA

41416_2023_2379_MOESM3_ESM.xlsx

Table S1. The clinicopathologic characteristics of 30 matched clinical LUAD samples employed for Western blot assay of protein expression of candidate genes.

Table S2. The antibodies used in this study.

Table S3. Immune-related genes matrix based on TCGA_LUAD database.

Table S4. A total of 889 lncRNAs-related immune genes (lrRIGs) were identified.

Table S5. 329 differentially expressed lncRNAs-related immune genes were identified.

41416_2023_2379_MOESM8_ESM.xlsx

Table S6. 27 lncRNAs-related immune genes were significantly associated with the OS of LUAD patients through univariate Cox regression analysis.

41416_2023_2379_MOESM9_ESM.xlsx

Table S7. Nine genes were screened to construct a significant prognostic signature by multivariate Cox regression analysis.

41416_2023_2379_MOESM10_ESM.xlsx

Table S8. Gene Set Enrichment Analysis (GSEA) was performed by comparing the high expression and low expression of the GPI gene based on the TCGA_LUAD, GSE31210, GSE68465 and GSE13213 databases.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhu, J., Yang, T. et al. Comprehensive analysis of the lncRNAs-related immune gene signatures and their correlation with immunotherapy in lung adenocarcinoma. Br J Cancer 129, 1397–1408 (2023). https://doi.org/10.1038/s41416-023-02379-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02379-8

This article is cited by

Search

Quick links