Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Hyperglycaemia induces metabolic reprogramming into a glycolytic phenotype and promotes epithelial-mesenchymal transitions via YAP/TAZ-Hedgehog signalling axis in pancreatic cancer

Abstract

Background

Hyperglycaemia is a well-known initial symptom in patients with pancreatic ductal adenocarcinoma (PDAC). Metabolic reprogramming in cancer, described as the Warburg effect, can induce epithelial-mesenchymal transition (EMT).

Methods

The biological impact of hyperglycaemia on malignant behaviour in PDAC was examined by in vitro and in vivo experiments.

Results

Hyperglycaemia promoted EMT by inducing metabolic reprogramming into a glycolytic phenotype via yes-associated protein (YAP)/PDZ-binding motif (TAZ) overexpression, accompanied by GLUT1 overexpression and enhanced phosphorylation Akt in PDAC. In addition, hyperglycaemia enhanced chemoresistance by upregulating ABCB1 expression and triggered PDAC switch into pure basal-like subtype with activated Hedgehog pathway (GLI1 high, GATA6 low expression) through YAP/TAZ overexpression. PDAC is characterised by abundant stroma that harbours tumour-promoting properties and chemoresistance. Hyperglycaemia promotes the production of collagen fibre-related proteins (fibronectin, fibroblast activation protein, COL1A1 and COL11A1) by stimulating YAP/TAZ expression in cancer-associated fibroblasts (CAFs). Knockdown of YAP and/or TAZ or treatment with YAP/TAZ inhibitor (K975) abolished EMT, chemoresistance and a favourable tumour microenvironment even under hyperglycemic conditions in vitro and in vivo.

Conclusion

Hyperglycaemia induces metabolic reprogramming into glycolytic phenotype and promotes EMT via YAP/TAZ-Hedgehog signalling axis, and YAP/TAZ could be a novel therapeutic target in PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hyperglycaemia induces YAP / TAZ overexpression and trigger the glycolytic phenotype in the metabolic pathway in PDAC cells.
Fig. 2: Hyperglycaemia promotes EMT by YAP/TAZ overexpression in PDAC cells.
Fig. 3: Hyperglycaemia enhances chemoresistance by upregulating ABCB1 expression via YAP/TAZ overexpression in PDAC cells.
Fig. 4: Hyperglycaemia triggers an alteration of molecular subtype in cancer cells via YAP/TAZ- Hedgehog signalling axis.
Fig. 5: Hyperglycaemia promoted malignant behaviour of PDAC via YAP/TAZ in vivo.
Fig. 6: Hyperglycaemia promotes collagen deposition by activating cancer-associated fibroblasts via YAP/TAZ overexpression.

Similar content being viewed by others

Data availability

All presented data are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Agarwal B, Correa AM, Ho L. Survival in pancreatic carcinoma based on tumor size. Pancreas. 2008;36:e15–20.

    Article  PubMed  Google Scholar 

  3. Oldfield LE, Connor AA, Gallinger S. Molecular events in the natural history of pancreatic cancer. Trends Cancer. 2017;3:336–46.

    Article  CAS  PubMed  Google Scholar 

  4. Norris AL, Roberts NJ, Jones S, Wheelan SJ, Papadoupoulous N, Vogelstein B, et al. Familial and sporadic pancreatic cancer share the same molecular pathogenesis. Fam Cancer. 2015;14:95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li S, Zhu H, Chen H, Xia J, Zhang F, Xu R, et al. Glucose promotes epithelial-mesenchymal transitions in bladder cancer by regulating the functions of YAP1 and TAZ. J Cell Mol Med. 2020;24:10391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li M, Bu X, Cai B, Liang P, Li K, Qu X, et al. Biological role of metabolic reprogramming of cancer cells during epithelialmesenchymal transition (Review). Oncol Rep. 2019;41:727–41.

    CAS  PubMed  Google Scholar 

  7. Maugeri-Sacca M, De Maria R. The Hippo pathway in normal development and cancer. Pharm Ther. 2018;186:60–72.

    Article  CAS  Google Scholar 

  8. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koo JH, Plouffe SW, Meng Z, Lee DH, Yang D, Lim DS, et al. Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes Dev. 2020;34:72–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yasuda T, Koiwa M, Yonemura A, Akiyama T, Baba H, Ishimoto T. Protocol to establish cancer-associated fibroblasts from surgically resected tissues and generate senescent fibroblasts. STAR Protoc. 2021;2:100553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, Kuroki H, et al. CD44s regulates the TGF-beta-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res. 2012;72:3414–23.

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi H, Higashi T, Yokoyama N, Kaida T, Sakamoto K, Fukushima Y, et al. An imbalance in TAZ and YAP expression in hepatocellular carcinoma confers cancer stem cell-like behaviors contributing to disease progression. Cancer Res. 2015;75:4985–97.

    Article  CAS  PubMed  Google Scholar 

  13. Kosumi K, Baba Y, Sakamoto A, Ishimoto T, Harada K, Nakamura K, et al. Lysine-specific demethylase-1 contributes to malignant behavior by regulation of invasive activity and metabolic shift in esophageal cancer. Int J Cancer. 2016;138:428–39.

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi H, Beppu T, Sakamoto Y, Miyamoto Y, Yokoyama N, Higashi T, et al. Prognostic value of Ki-67 expression in conversion therapy for colorectal liver-limited metastases. Am J Cancer Res. 2015;5:1225–33.

    PubMed  PubMed Central  Google Scholar 

  15. Chikamoto A, Inoue R, Komohara Y, Sakamaki K, Hashimoto D, Shiraishi S, et al. Preoperative high maximum standardized uptake value in association with glucose transporter 1 predicts poor prognosis in pancreatic cancer. Ann Surg Oncol. 2017;24:2040–6.

    Article  PubMed  Google Scholar 

  16. Hayashi H, Sakai K, Baba H, Sakai T. Thrombospondin-1 is a novel negative regulator of liver regeneration after partial hepatectomy through transforming growth factor-beta1 activation in mice. Hepatology. 2012;55:1562–73.

    Article  CAS  PubMed  Google Scholar 

  17. Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer. 2020;19:50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li J, Wu H, Li W, Yin L, Guo S, Xu X, et al. Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-kappaB signaling. Oncogene. 2016;35:5501–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moitra K. Overcoming multidrug resistance in cancer stem cells. Biomed Res Int. 2015;2015:635745.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Puleo F, Nicolle R, Blum Y, Cros J, Marisa L, Demetter P, et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology. 2018;155:1999–2013.e1993.

    Article  PubMed  Google Scholar 

  21. Kozhemyakina E, Ionescu A, Lassar AB. GATA6 is a crucial regulator of Shh in the limb bud. PLoS Genet. 2014;10:e1004072.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D, Syu L, et al. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Cancer Res. 2021;27:2023–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujii M, Toyoda T, Nakanishi H, Yatabe Y, Sato A, Matsudaira Y, et al. TGF-beta synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth. J Exp Med. 2012;209:479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell. 2010;19:831–44.

    Article  CAS  PubMed  Google Scholar 

  25. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, et al. Role of TAZ as mediator of Wnt signaling. Cell. 2012;151:1443–56.

    Article  CAS  PubMed  Google Scholar 

  26. Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, et al. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell. 2010;18:579–91.

    Article  CAS  PubMed  Google Scholar 

  27. Fernandez-L A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23:2729–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin YT, Ding JY, Li MY, Yeh TS, Wang TW, Yu JY. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res. 2012;318:1877–88.

    Article  CAS  PubMed  Google Scholar 

  29. Chen HJ, Wang CM, Wang TW, Liaw GJ, Hsu TH, Lin TH, et al. The Hippo pathway controls polar cell fate through Notch signaling during Drosophila oogenesis. Dev Biol. 2011;357:370–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yu J, Poulton J, Huang YC, Deng WM. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity. PLoS ONE. 2008;3:e1761.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rozengurt E, Eibl G. Crosstalk between KRAS, SRC and YAP signaling in pancreatic cancer: interactions leading to aggressive disease and drug resistance. Cancers (Basel). 2021;13:5126–46.

  32. Koikawa K, Kibe S, Suizu F, Sekino N, Kim N, Manz TD, et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell. 2021;184:4753–71.e4727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou XZ, Lu KP. The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Nat Rev Cancer. 2016;16:463–78.

    Article  CAS  PubMed  Google Scholar 

  34. Amin S, Mhango G, Lin J, Aronson A, Wisnivesky J, Boffetta P, et al. Metformin improves survival in patients with pancreatic ductal adenocarcinoma and pre-existing diabetes: a propensity score analysis. Am J Gastroenterol. 2016;111:1350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal. 2014;7:ra42.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gruber R, Panayiotou R, Nye E, Spencer-Dene B, Stamp G, Behrens AYAP1. and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling. Gastroenterology. 2016;151:526–39.

    Article  CAS  PubMed  Google Scholar 

  37. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    Article  CAS  PubMed  Google Scholar 

  38. Halldorsson S, Rohatgi N, Magnusdottir M, Choudhary KS, Gudjonsson T, Knutsen E, et al. Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett. 2017;396:117–29.

    Article  CAS  PubMed  Google Scholar 

  39. Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance in pancreatic cancer. Int J Mol Sci. 2019;20:4504–22.

  40. Gzil A, Zarębska I, Bursiewicz W, Antosik P, Grzanka D, Szylberg Ł. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol Biol Rep. 2019;46:6629–45.

    Article  CAS  PubMed  Google Scholar 

  41. Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol (Lausanne). 2020;11:191.

    Article  PubMed  Google Scholar 

  42. Hayashi H, Higashi T, Miyata T, Yamashita YI, Baba H. Recent advances in precision medicine for pancreatic ductal adenocarcinoma. Ann Gastroenterol Surg. 2021;5:457–66.

    Article  PubMed  PubMed Central  Google Scholar 

  43. O’Kane GM, Grünwald BT, Jang GH, Masoomian M, Picardo S, Grant RC, et al. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer. Clin Cancer Res. 2020;26:4901–10.

    Article  PubMed  Google Scholar 

  44. Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 2021;11:8322–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Srivastava SP, Goodwin JE. Cancer biology and prevention in diabetes. Cells. 2020;9:1380–1415.

  46. Foster CT, Gualdrini F, Treisman R. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev. 2017;31:2361–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hiromitsu Hayashi, Dr. Norio Uemura and Dr. Kazuki Matsumura for helping with the study; Ms. Ogata, Ms. Yasuda and Ms. Taniguchi for their excellent technical assistance; Dr. Feng Wei, Dr. Chuan Lan and Dr. Xiyu Wu for giving me good advices; Shigeki Nakagawa, Kosuke Mima, Katsunori Imai, Yo-ichi Yamashita and Prof. Hideo Baba for assistance with revision of the paper. Data sharing requests will be considered by the management group upon written request to the corresponding author.

Funding

This work was supported by a Grant-in-Aid for Scientists (C); the Ministry of Education, Culture, Sports, Science, and Technology of Japan, No. 19K09177 (to HH); the Takeda Science Foundation, Japan (to HH); Japanese Foundation for Multidisciplinary Treatment of Cancer, Japan (to HH) and JST SPRING, Grant Number JPMJSP2127 (to ZL).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: ZL and HH. Performed the experiments: ZL, NU, KM and YO. Analysed the data: ZL and HH. Wrote the manuscript: HH and ZL. Collected clinical samples: ZL, NU, KM, HS, YS, TM and TH. Organised the paper and approved the final version to be published: HH, SN, KM, KI and HB.

Corresponding author

Correspondence to Hideo Baba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the Medical Ethics Committee of Kumamoto University (Project No. 1291), and written informed consent was obtained from all human subjects.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Consent for publication Not applicable

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Hayashi, H., Matsumura, K. et al. Hyperglycaemia induces metabolic reprogramming into a glycolytic phenotype and promotes epithelial-mesenchymal transitions via YAP/TAZ-Hedgehog signalling axis in pancreatic cancer. Br J Cancer 128, 844–856 (2023). https://doi.org/10.1038/s41416-022-02106-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-02106-9

This article is cited by

Search

Quick links