Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

STAT3 potentiates RNA polymerase I-directed transcription and tumor growth by activating RPA34 expression

Abstract

Background

Deregulation of either RNA polymerase I (Pol I)-directed transcription or expression of signal transducer and activator of transcription 3 (STAT3) correlates closely with tumorigenesis. However, the connection between STAT3 and Pol I-directed transcription hasn’t been investigated.

Methods

The role of STAT3 in Pol I-directed transcription was determined using combined techniques. The regulation of tumor cell growth mediated by STAT3 and Pol I products was analyzed in vitro and in vivo. RNAseq, ChIP assays and rescue assays were used to uncover the mechanism of Pol I transcription mediated by STAT3.

Results

STAT3 expression positively correlates with Pol I product levels and cancer cell growth. The inhibition of STAT3 or Pol I products suppresses cell growth. Mechanistically, STAT3 activates Pol I-directed transcription by enhancing the recruitment of the Pol I transcription machinery to the rDNA promoter. STAT3 directly activates Rpa34 gene transcription by binding to the RPA34 promoter, which enhances the occupancies of the Pol II transcription machinery factors at this promoter. Cancer patients with RPA34 high expression lead to poor survival probability and short survival time.

Conclusion

STAT3 potentiates Pol I-dependent transcription and tumor cell growth by activating RPA34 in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alteration of STAT3 expression affected Pol I-directed transcription.
Fig. 2: The positive role of STAT3 in Pol I-directed transcription was confirmed by a dCas9 activation and repression system as well as a STAT3 inhibitor.
Fig. 3: STAT3 promotes cancer cell proliferation.
Fig. 4: STAT3 downregulation inhibited tumor cell growth in vivo.
Fig. 5: STAT3-IN-3 and CX-5461 showed an additive effect on the inhibition of tumor cell growth in vitro and in vivo.
Fig. 6: STAT3 expression positively correlates with RPA34 expression at both RNA and protein levels.
Fig. 7: The relationship between RPA34 expression levels and survival probability and survival time in cancers.
Fig. 8: STAT3 regulates the assembly of components of the Pol I transcription machinery at the rDNA promoter by affecting RPA34 expression.
Fig. 9: STAT3 modulates Pol I–directed transcription by controlling RPA34 transcription.
Fig. 10: A proposed model by which STAT3 modulates Pol I-directed transcription.

Similar content being viewed by others

Data availability

The RNA-seq data about SaOS2 cell FLNA silencing were deposited in the NCBI repository (SRA: SRP318361, https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA726417). The RNA-seq data about HepG2 cell STAT3 silencing were deposited in the NCBI Gene Expression Omnibus (GSE201548). The RNA-seq data used for Pearson correlation analysis, Kaplan–Meier plotting and Violin plotting were obtained from the TCGA database (www.tcgaportal.org).

References

  1. Lee H, Jeong AJ, Ye SK. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep. 2019;52:415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Srivastava J, DiGiovanni J. Non-canonical Stat3 signaling in cancer. Mol Carcinog. 2016;55:1889–98.

    Article  CAS  PubMed  Google Scholar 

  3. Yang L, Lin S, Xu L, Lin J, Zhao C, Huang X. Novel activators and small-molecule inhibitors of STAT3 in cancer. Cytokine Growth Factor Rev. 2019;49:10–22.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signaling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chua CY, Liu Y, Granberg KJ, Hu L, Haapasalo H, Annala MJ, et al. IGFBP2 potentiates nuclear EGFR-STAT3 signaling. Oncogene. 2016;35:738–47.

    Article  CAS  PubMed  Google Scholar 

  6. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. Stat3 as an oncogene. Cell. 1999;98:295–303.

    Article  CAS  PubMed  Google Scholar 

  7. Aryappalli P, Shabbiri K, Masad RJ, Al-Marri RH, Haneefa SM, Mohamed YA, et al. Inhibition of tyrosine-phosphorylated STAT3 in human breast and lung cancer cells by manuka honey is mediated by selective antagonism of the IL-6 receptor. Int J Mol Sci. 2019;20:4340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Q, Raje V, Yakovlev VA, Yacoub A, Szczepanek K, Meier J, et al. Stat3 promotes breast cancer growth via phosphorylation of serine 727. J Biol Chem. 2013;288:31280–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, et al. Function of mitochondrial Stat3 in cellular respiration. Science. 2009;323:793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science. 2009;324:1713–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Macias E, Rao D, Carbajal S, Kiguchi K, Digiovanni J. Stat3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J Invest Dermatol. 2014;134:1971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tammineni P, Anugula C, Mohammed F, Anjaneyulu M, Larner AC, Sepuri NB. The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. J Biol Chem. 2013;288:4723–32.

    Article  CAS  PubMed  Google Scholar 

  13. Braunstein J, Brutsaert S, Olson R, Schindler C. STATs dimerize in the absence of phosphorylation. J Biol Chem. 2003;278:34133–40.

    Article  CAS  PubMed  Google Scholar 

  14. Yang JB, Stark GR. Roles of unphosphorylated STATs in signaling. Cell Res. 2008;18:443–51.

    Article  CAS  PubMed  Google Scholar 

  15. Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev. 2007;21:1396–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Chatterjee-Kishore M, Staugaitis SM, Nguyen H, Schlessinger K, Levy DE, et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res. 2005;65:939–47.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao J, Du P, Cui P, Qin Y, Hu C, Wu J, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37:4094–109.

    Article  CAS  PubMed  Google Scholar 

  18. Huang Z, Zhou W, Li Y, Cao M, Wang T, Ma Y, et al. Novel hybrid molecule overcomes the limited response of solid tumors to HDAC inhibitors via suppressing JAK1-STAT3-BCL2 signalling. Theranostics. 2018;8:4995–5011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Su K, Zhao Q, Bian A, Wang C, Cai Y, Zhang Y. A novel positive feedback regulation between long noncoding RNA UICC and IL-6/STAT3 signaling promotes cervical cancer progression. Am J Cancer Res. 2018;8:1176–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dai W, Liu S, Zhang J, Pei M, Xiao Y, Li J, et al. Vorinostat triggers miR-769-5p/3p-mediated suppression of proliferation and induces apoptosis via the STAT3-IGF1R-HDAC3 complex in human gastric cancer. Cancer Lett. 2021;S0304-3835:00437–7.

    Google Scholar 

  21. Chuang CH, Greenside PG, Rogers ZN, Brady JJ, Yang D, Ma RK, et al. Molecular definition of a metastatic lung cancer state reveals a targetable CD109- Janus kinase-Stat axis. Nat Med. 2017;23:291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jia L, Wang Y, Wang CY. circFAT1 promotes cancer stemness and immune evasion by promoting STAT3 activation. Adv Sci. 2021;8:2003376.

    Article  CAS  Google Scholar 

  23. Cayrol F, Praditsuktavorn P, Fernando TM, Kwiatkowski N, Marullo R, Calvo-Vidal MN, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He L, Pratt H, Gao M, Wei F, Weng Z, Struhl K. YAP and TAZ are transcriptional co-activators of AP-1 proteins and STAT3 during breast cellular transformation. Elife. 2021;10:e67312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lv D, Li Y, Zhang W, Alvarez AA, Song L, Tang J, et al. TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma. Nat Commun. 2017;8:1454.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang ST, Ho HJ, Lin JT, Shieh JJ, Wu CY. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells. Cell Death Dis. 2017;8:e2626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chung SS, Adekoya D, Enenmoh I, Clarke O, Wang P, Sarkyssian M, et al. Salinomycin abolished STAT3 and STAT1 interactions and reduced telomerase activity in colorectal cancer cells. Anticancer Res. 2017;37:445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahn KS, Sethi G, Sung B, Goel A, Ralhan R, Aggarwal BB. Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1. Cancer Res. 2008;68:4406–15.

    Article  CAS  PubMed  Google Scholar 

  29. Song JM, Qian X, Upadhyayya P, Hong KH, Kassie F. Dimethylaminoparthenolide, a water soluble parthenolide, suppresses lung tumorigenesis through down-regulating the STAT3 signaling pathway. Curr Cancer Drug Targets. 2014;14:59–69.

    Article  PubMed  Google Scholar 

  30. Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell. 2019;36:498–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai G, Yu W, Song D, Zhang W, Guo J, Zhu J, et al. Discovery of fluorescent coumarin-benzo thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. Eur J Med Chem. 2019;174:236–51.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang N, Zhang M, Wang Z, Gao W, Sun ZG. Activated STAT3 could reduce survival in patients with esophageal squamous cell carcinoma by up-regulating VEGF and cyclin D1 expression. J Cancer. 2020;11:1859–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA. 2001;98:7319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M, et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res. 2006;12:11–9.

    Article  CAS  PubMed  Google Scholar 

  35. Drygin D, Rice WG, Grummt I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharm Toxicol. 2010;50:131–56.

    Article  CAS  Google Scholar 

  36. Sharifi S, Bierhoff H. Regulation of RNA polymerase I transcription in development, disease, and aging. Annu Rev Biochem. 2018;87:1–73.

    Article  Google Scholar 

  37. Ferreira R, Schneekloth JS Jr, Panov KI, Hannan KM, Hannan RD. Targeting the RNA polymerase I transcription for cancer therapy comes of age. Cells. 2020;9:266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goodfellow SJ, Zomerdijk JC. Basic mechanism in RNA polymerase I transcription of ribosomal RNA genes. Subcell Biochem. 2013;61:211–36.

    Article  CAS  PubMed  Google Scholar 

  39. Arabi A, Wu S, Ridderstråle K, Bierhoff H, Shiue C, Fatyol K, et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol. 2005;7:303–10.

    Article  CAS  PubMed  Google Scholar 

  40. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. 2012;22:51–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mayer C, Bierhoff H, Grummt I. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes Dev. 2005;19:933–41. Apr 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tessarz P, Santos-Rosa H, Robson SC, Sylvestersen KB, Nelson CJ, Nielsen ML, et al. Glutamine methylation in histone H2A is an RNA-polynerase-I-dedicated modification. Nature. 2014;505:564–8.

    Article  CAS  PubMed  Google Scholar 

  43. Xing YH, Yao RW, Zhang Y, Guo CJ, Jiang S, Xu G, et al. SLERT regulates DDX21 rings associated with Pol I transcription. Cell. 2017;169:664–78.

    Article  CAS  PubMed  Google Scholar 

  44. Deng W, Lopez-Camacho C, Tang JY, Mendoza-Villanueva D, Maya-Mendoza A, Jackson DA, et al. Cytoskeletal protein filamin A is a nucleolar protein that suppresses ribosomal RNA gene transcription. Proc Natl Acad Sci USA. 2012;109:1524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Zhao S, Wei Y, Zhou Y, Shore P, Deng W. Cytoskeletal filamin A differentially modulates RNA polymerase III gene transcription in transformed cell lines. J Biol Chem. 2016;291:25239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peng F, Zhou Y, Wang J, Guo B, Wei Y, Deng H, et al. The transcription factor Sp1 modulates RNA polymerase III gene transcription by controlling BRF1 and GTF3C2 expression in human cells. J Biol Chem. 2020;295:4617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin X, Zhang K, Wang J, Zhou X, Zhang C, Song X, et al. RNA polymerase I subunit 12 plays opposite roles in cell proliferation and migration. Biochem Biophys Res Commun. 2021;560:112–8.

    Article  CAS  PubMed  Google Scholar 

  48. Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;2014:655–8.

    Article  PubMed  Google Scholar 

  49. Canene-Adams K. Preparation of formalin-fixed paraffin-embedded tissue for immunochemistry. Methods Enzymol. 2013;33:225–33.

    Article  Google Scholar 

  50. Zhang C, Zhao H, Song X, Wang J, Zhao S, Deng H, et al. Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway. J Biol Chem. 2022;298:101581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bian Z, Ji W, Xu B, Huo Z, Huang H, Huang J, et al. Noncoding RNAs involved in the STAT3 pathway in glioma. Cancer Cell Int. 2021;21:445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Filppu P, Tanjore Ramanathan J, Granberg KJ, Gucciardo E, Haapasalo H, Lehti K, et al. CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity. JCI Insight. 2021;6:e141486.

    Article  PubMed  PubMed Central  Google Scholar 

  53. White RJ. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet. 2008;24:622–9.

    Article  CAS  PubMed  Google Scholar 

  54. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Disco. 2006;5:219–34.

    Article  Google Scholar 

  55. Unsoy G, Gunduz U. Smart drug delivery systems in cancer therapy. Curr Drug Targets. 2018;19:202–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (31671357 to WD, 62172312 to SZhang).

Author information

Authors and Affiliations

Authors

Contributions

CZ performed most work in Figs. 1–8 and in the supplementary file; JW validated data and mentored researchers; YS and DY performed cell culture and cell line screening; YP and BG performed gene cloning; HD prepared CRPSR dCas9 expression system, designed experiments and performed a part of supervision work; XY performed RPA34 shRNA cloning; SZhang and SZhao performed most of the supervision work, processed data, and edited the manuscript; WD acquired the fund of this work, designed experiments, processed data, and wrote the manuscript.

Corresponding authors

Correspondence to Shasha Zhao, Huan Deng, Shihua Zhang or Wensheng Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Animal experiments were approved by the Animal and Medical Ethics Committee of School of Life Science and Health at Wuhan University of Science and Technology. The animal protocols abided by the Animal Welfare Guidelines (China).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, J., Song, X. et al. STAT3 potentiates RNA polymerase I-directed transcription and tumor growth by activating RPA34 expression. Br J Cancer 128, 766–782 (2023). https://doi.org/10.1038/s41416-022-02098-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-02098-6

Search

Quick links