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BACKGROUND: Decitabine (DAC) is used as the first-line therapy in patients with higher-risk myelodysplastic syndromes (HR-MDS) and
elderly acute myeloid leukaemia (AML) patients unsuitable for intensive chemotherapy. However, the clinical outcomes of patients
treated with DAC as a monotherapy are far from satisfactory. Adding all-trans retinoic acid (ATRA) to DAC reportedly benefitted MDS and
elderly AML patients. However, the underlying mechanisms remain unclear and need further explorations from laboratory experiments.
METHODS: We used MDS and AML cell lines and primary cells to evaluate the combined effects of DAC and ATRA as well as the
underlying mechanisms. We used the MOLM-13-luciferase murine xenograft model to verify the enhanced cytotoxic effect of the drug
combination.
RESULTS: The combination treatment reduced the viability of MDS/AML cells in vitro, delayed leukaemia progress, and extended
survival in murine xenograft models compared to non- and mono-drug treated models. DAC application as a single agent induced Nrf2
activation and downstream antioxidative response, and restrained reactive oxygen species (ROS) generation, thus leading to DAC
resistance. The addition of ATRA blocked Nrf2 activation by activating the RARα-Nrf2 complex, leading to ROS accumulation and ROS-
dependent cytotoxicity.
CONCLUSIONS: These results demonstrate that combining DAC and ATRA has potential for the clinical treatment of HR-MDS/AML and
merits further exploration.
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BACKGROUND
Myelodysplastic syndromes (MDS) are heterogeneous clonal hae-
matopoietic disorders characterised by ineffective haematopoiesis,
progressive cytopenia, and the risk of progression to acute myeloid
leukaemia (AML) [1]. MDS patients can be categorised into lower-risk
(LR) and higher-risk (HR) subgroups according to the International
Prognostic Scoring System (IPSS) [2] and revised IPSS (IPSS-R) [3].
Aberrant DNA methylation is prevalent, and plays a pivotal role in
the pathogenesis of MDS and transformation into AML [4, 5]. In HR-
MDS, hypomethylating agents (HMA) are widely used as the first-line
treatment to decrease the malignant clone and prolong survival.
HMA are also used in elderly AML patients ineligible for intensive
induction chemotherapy. However, the clinical outcomes of HR-MDS
patients treated with HMA as monotherapy were unsatisfactory.
The response rate of complete remission + partial remission
(CR+ PR) was 19–29% [6, 7], and that of CR+ PR+marrow

complete remission (mCR)+ haematological improvement (HI) was
47.6–61% [8, 9], with an overall survival (OS) time of 17.7–22 months
[10–12]. For older patients with AML (aged ≥ 60 years) treated with
HMA alone, the response rate of CR+ PR+ CRi (morphologic CR
with incomplete blood count recovery) was ~15–30%, with a
median OS time of 7.7–10.4 months [13, 14]. Therefore, combination
strategies were explored with the goal of achieving higher response
rates and longer survival in HR-MDS and elderly AML patients.
Several target agents, including BCL-2 inhibitor (venetoclax), CD47
monoclonal antibody (magrolimab), TP53 mutation modulator (APR-
246), and IDH1/2 inhibitor (ivosidenib, enasidenib), used in
combination with HMA (the “HMA+ X” treatment strategy), are
currently being investigated in various clinical trials and laboratory
studies [15–19].
All-trans retinoic acid (ATRA) is a bioactive metabolite of vitamin

A with pivotal roles in cell differentiation, proliferation, apoptosis,
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and embryonic development [20]. ATRA has wide applications in
acute promyelocytic leukaemia (APL) patients; it targets PML/RARα
infusion protein, provokes terminal differentiation of promyelo-
cytes [21, 22], and transforms APL from a highly fatal disease to
highly curable disease [20]. However, the application of ATRA in
non-APL AML remains controversial.
Burnett et al. [23] reported no benefit of adding ATRA to the

DAT regimen (daunorubicin, thioguanine, and Ara-C at standard or
high doses) in newly diagnosed young AML and HR-MDS patients.
Also, no patient subgroup achieved longer survival after the
addition of ATRA [23]. Schlenk et al. reported that the addition of
ATRA to ICE (idarubicin, cytarabine, and etoposide) improved the
complete response rate (CRR), event-free survival (EFS), and OS in
elderly patients with AML [24]. Also, clinical investigations
revealed that co-administration of the hypomethylation agents
decitabine (DAC) and ATRA benefitted MDS and elderly AML
patients unsutiable for intensive chemotherapy [25, 26]. Moreover,
DAC and ATRA combination treatment exerted a synergistic anti-
leukaemia effect on AML cell lines [25, 27–29]. However, the
mechanisms underlying the synergistic effect remain unclear.
Therefore, we explored the effects of the combination approach of
DAC and ATRA on MDS and AML cells, and the underlying
molecular mechanism.
Treatment of MDS-L and MOLM-13 cells using DAC as a single

agent led to nuclear factor erythroid-2 related factor 2-antioxidant
response element (Nrf2-ARE) pathway activation. The Nrf2-ARE
pathway, which is the primary regulator of cellular redox
equilibrium, reportedly mediates resistance to chemotherapy,
demethylation therapy, and target therapy in various tumours
[30–33]. Previously, we showed that high expression of Nrf2
confers resistance to chemotherapy in MDS [34]. Activation of the
canonical Nrf2-ARE pathway is induced by the generation and
accumulation of reactive oxygen species (ROS) [35]. Once
activated, the Nrf2-ARE signalling pathway restrains cellular ROS
accumulation, reversing ROS-dependent cytotoxicity. Nguyen
et al. reported that a relatively high dose (10 μM) of DAC
promoted Nrf2 activation via mitochondrial ROS (mitoROS)
induction, triggering DAC resistance in AML cells [36]. However,
after MDS patients were treated with DAC at a dose of 20 mg/m2

for 5 consecutive days, the immediate DAC concentration in the
serum was 0.76 (0.37–1.36) μM [37]. Our study showed that
treatment of MDS-L and MOLM-13 cells with DAC at relatively low
doses (0.8 and 1.5 μM) also led to activation of the Nrf2-ARE
pathway through mitoROS accumulation, which induced tran-
scriptional activation of the downstream antioxidant genes NQO1,
DUSP1, GPX2, and FTH, thus conferring resistance to DAC.
Therefore, a combination therapy that antagonises the Nrf2-ARE
pathway activation is needed for an enhanced cytotoxic effect on
MDS and AML.
We demonstrated that combined DAC and ATRA treatment

induced apoptosis in MDS and AML cells by activating caspase
proteins. Next, we determined that ATRA induced RARα activation
and blocked the Nrf2-ARE pathway through the RARα-Nrf2 complex
in the nucleus, thereby decreasing transcriptional activation of
antioxidant genes downstream of Nrf2. We further confirmed that
combined treatment decreased the tumour burden and prolonged
survival in an AML murine xenograft model.

METHODS
The methods are described in more detail in the Supplementary
Information.

Cell lines and primary cells
The MDS cell line (MDS-L) was kindly gifted by Professor GuidoMarcucci (City
of Hope National Medical Center, Duarte, CA, USA), and theMDS transformed
AML cell line MOLM-13 was from our laboratory stock and validated by short
tandem repeat (STR) profiling (Supplementary Fig. 1). The bone marrow

samples were taken from MDS and AML patients with at initial diagnosis at
the Department of Hematology, the First Affiliated Hospital, Zhejiang
University School of Medicine. The baseline data of six patients are listed in
Supplementary Table 1. Informed consent was obtained from all patients.
The study protocol for sample collection and clinical information was
approved by the Clinical Research Ethics Committee of the First Affiliated
Hospital, Zhejiang University School of Medicine. Bonemarrowmononuclear
cells (BMMC) were separated by density gradient centrifugation using Ficoll-
Hypaque solution (TBD Science, Tianjin, China). MOLM-13 and primary cells
were cultured in RPMI 1640 medium supplemented with 10% foetal bovine
serum (FBS) (Vistech, Wellington, New Zealand), and the MDS-L was cultured
in the indicated medium with additional IL-3 (10 ng/ml). The cell lines and
primary cells were cultured at 37 °C in a humidified incubator containing 5%
CO2. No mycoplasma contamination was observed in the cell lines
mentioned above.

Knockdown of RARA in the cell lines
The RARA small hairpin RNA (shRNA) (Supplementary Table 2) was
subcloned via a BamHI-EcoRI restriction digest into a psi-LVRU6GP vector
(GeneCopoeia, Rockville, MD, USA). The psi-LVRU6GP-scramble (GeneCo-
poeia) was used as a control. We used the Calcium Phosphate Cell
Transfection Kit (Beyotime Biotechnology, Shanghai, China) to co-transfect
recombined lentiviral vectors with the psPAX2 and pMD2 VSV-G packaging
vectors in HEK293T cells. The culture supernatants were collected after
48 h and transduced onto the MDS-L and MOLM-13 cells. Infected cells
were selected with puromycin (0.5–1 µg/ml) for 48 h to make stable cell
lines. The expression of the target gene was quantified by quantitative
polymerase chain reaction (qPCR) and western blotting.

Co-immunoprecipitation and western blotting
We used Invent Cytoplasmic and Nuclear Extraction Kits (Invent
Biotechnology) for the co-immunoprecipitation (Co-IP) experiments. The
nuclear protein supernatants were collected by centrifugation at
13,000 × g for 1 min. The protein lysates were incubated with rabbit IgG
for 30min, followed by constant rotation with Nrf2 antibody (#12721; Cell
Signaling Technology, Danvers, MA, USA) or rabbit IgG overnight at 4 °C to
form an Nrf2-antibody complex. Next, we added 20 µl of resuspended
Protein A/G PLUS Agarose (Santa Cruz Biotechnology, Dallas, TX, USA) to
the samples to bind to the complex at 4 °C for 2 h. The immunoprecipitate
was collected by centrifugation at 1000 × g for 5 min at 4 °C and washed
three times in lysis buffer. The sample was resuspended in 30 μl of 1×
electrophoresis sample buffer (ThermoFisher, Waltham, MA, USA), and
boiled for 5 min. The eluted proteins were analysed by western blotting
using anti-RARα (Proteintech, Wuhan, China), anti-HDAC1 (Proteintech),
and anti-Nrf2 antibodies (#12721; Cell Signaling Technology).

In vivo murine xenograft models
All animal experiments were approved by the First Affiliated Hospital,
Zhejiang University School of Medicine (Hangzhou, China) and
conducted following the National Institutes of Health Guide for the
Care and Use of Laboratory Animals. For the mouse model, 5-week-old
female NOD-Prkdcscid IL2rgtm1/Bcgen (B-NDG) mice (Biocytogen,
Wakefield, MA, USA) were maintained under specific pathogen-free
conditions, housed in isolated vented cages, and handled using aseptic
procedures for 1 week. Next, 1 × 106 MOLM-13-Luciferase (MOLM-13-
Luc) cells were injected via the tail veins to establish the cell line-derived
xenograft (CDX) model. Leukaemia engraftment was assessed by
intraperitoneal injection of D-luciferin (150 mg/kg), followed by biolu-
minescent imaging using the IVIS Lumina LT system (PerkinElmer,
Waltham, MA, USA). Twenty-four mice were randomly assigned to four
groups and treated with either 3.3 mg/kg DAC, 10 mg/kg ATRA, both
drugs in combination at the indicated concentrations (COM), or vehicle
(Ctrl). DAC was diluted in PBS to 3.3 mg/ml and stored at −20 °C. ATRA
was prepared in 0.01% carboxymethyl cellulose sodium (CMC-Na) and
stored at −20 °C. ATRA was administered by gastric lavage for 21 days.
DAC was administered by tail-vein injection over 5 days. The mice were
humanely sacrificed after observation of bowed back and paralysed
limbs. Survival curves were generated using GraphPad Prism 8
(GraphPad Software Inc., San Diego, CA, USA), and differences between
groups were analysed using two-tailed Student’s t-tests. The spleens
were harvested for hematoxylin and eosin (HE) staining and immuno-
histochemistry (IHC). Human CD45 antibody (#13917; Cell Signaling
Technology) was used to identify the engraftments.
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Statistical analysis
Data were visualised and analysed using GraphPad Prism 8 software and
SPSS 20.0 (IBM Corp., Armonk, NY, USA). The values represent
the means ± standard deviation (SD) of at least three independent
experiments. Statistical analyses were performed using the unpaired
Student’s t-test for two-group comparisons. We used analysis of
variance (ANOVA) for comparison of more than two groups. Survival
comparisons were performed using the Kaplan–Meier method and
analysed using the log-rank test. P-values < 0.05 were considered
statistically significant.

RESULTS
ATRA augmented the cytotoxic effect of DAC on MDS and
AML cells
We treated MDS-L and MOLM-13 cell lines with DAC at doses
consistent with the serum concentrations of patients under standard
treatments (DAC at 20mg/m2 for 5 days). Treatment with DAC or
ARTA alone had limited effects on the viability and apoptosis of
MDS-L and MOLM-13 cell lines. However, exposure to both agents
decreased the viability of MDS-L and MOLM-13 cells, as measured by
the CellTiter-Lumi™ Assay. The Chou-Talalay method was used to
calculate the combination index (CI) of the two drugs, and yielded a
value <1 (indicating a synergistic effect; Fig. 1a). We also observed
enhanced apoptosis (Fig. 1b) in the co-treatment group, as
evidenced by increased annexin V/PI staining (P < 0.05) and
upregulated cleaved caspase-3 and cleaved PARP (Fig. 1c). The cell
cycle distribution showed no significant difference between the
mono-drug and combination groups (Supplementary Fig. 2). There-
fore, the decreased cell viability was mainly attributed to the pro-
apoptosis effect. We also examined the cell viability of primary cells
from newly diagnosed MDS and AML patients after exposure to a
single agent and both in combination. The combined treatment
with DAC and ATRA reduced cell viability compared to the mono-
drug treatments (Fig. 1d).

DAC and ATRA increased the cellular cytotoxicity by elevating
mitoROS levels
A relatively high DAC dose (10 μM) exerts a cytotoxic effect via
mitoROS induction. We investigated whether the cytotoxicity
induced by DAC at lower doses (0.8 and 1.5 μM on cell lines and
1.0 μM on primary cells), as a single agent and combined with
ATRA, was related to mitoROS. DAC alone induced mitoROS
production in MDS-L, MOLM-13 and primary cells. DAC and ATRA
combined augmented mitoROS generation (Fig. 2a). Pre-
treatment with the free radical scavenger N-acetyl-L-cysteine
(NAC) reversed the apoptotic effects of DAC, alone and in
combination with ATRA (Fig. 2b), implicating the mitoROS
elevation induced by ATRA in the greater cytotoxicity of the
combined treatment.

ATRA blocked the Nrf2-ARE activation induced by a low dose
of DAC
The Nrf2-ARE pathway is the primary regulator of cellular redox
equilibrium. To investigate the correlation between Nrf2 activation
and mitoROS, we performed immunofluorescence analyses of
MDS-L and MOLM-13 cells. DAC treatment translocated Nrf2 from
the cytoplasm to the nucleus, indicating that Nrf2 was activated
by DAC (Fig. 3a). Using cellular fraction immunoblotting, we found
that DAC activated the Nrf2-ARE pathway, thereby triggering Nrf2
relocation to the nucleus (Fig. 3b). Consistent with Nrf2 activation,
we observed increased mRNA and protein expression levels of the
Nrf2-dependent NQO1, DUSP1, GPX2, and FTH in DAC-treated
cells (Fig. 3c, d). Moreover, co-treatment with DAC and ATRA
markedly inhibited the expression of the Nrf2-dependent genes
NQO1, DUSP1, GPX2, and FTH (Fig. 3c, d) but did not reverse Nrf2
translocation (Fig. 3a, b), suggesting that the antagonism of ATRA
to Nrf2 occurred in the nucleus in a post-translocation manner.

Therefore, we hypothesised that repressing Nrf2-ARE activation
could stimulate the mitoROS‐mediated cytotoxic effect of DAC.

Knockdown of RARα counteracted ATRA-induced apoptosis
ATRA exerts pleiotropic effects by activating its RARα ligand. We
examined the effect of RARα knockdown (KD) by shRNA on
apoptosis to determine the role of RARα in synergistic apoptosis.
Real-time PCR and western blotting (Fig. 4a) showed that the
shRNAs sh1 and sh2 markedly decreased RARα expression
compared with the shCtrl. Annexin V/PI staining showed that
RARα KD reversed the cytotoxicity of the combination group
compared with the shCtrl. However, there was no significant
difference in the apoptosis rate between RARα KD and shCtrl cells
when treated with DAC alone (Fig. 4b, c). These results indicated
that ATRA restrained the Nrf2-ARE signalling response by
activating RARα.

Combined treatment activated the RARα-Nrf2 functional
complex in the nucleus
We performed immunoprecipitation experiments to investigate
whether activated RARα antagonised Nrf2 function through
physical interactions. After treatment with DAC, alone or in
combination with ATRA for 24 h, we used the Nrf2 antibody to
immunoprecipitate Nrf2 in MDS-L and MOLM-13 cells. Immuno-
blots of the precipitate revealed the presence of RARα and HDAC1
(Fig. 5), suggesting that Nrf2, RARα, and HDAC1 formed a complex.
Nrf2 coprecipitated with RARα in the presence of DAC, either as a
single agent or with the addition of ATRA. However, the level of
HDAC1 bound to the RARα-Nrf2 complex decreased after co-
treatment with DAC and ATRA, suggesting that the RARα-Nrf2
complex was activated and counteracted the activation of Nrf2-
ARE signalling.

Combined DAC and ATRA treatment showed antileukemic
activity in vivo
We evaluated the effect of combining DAC and ATRA on
leukaemia burden and survival in a murine xenograft model.
The model was established by intravenous injection with
luciferase-labelled MOLM-13 cells via the tail vein. The mice were
treated with vehicle, DAC (3.3 mg/kg/day for 5 days), ATRA
(10mg/kg/day for 21 days), or both drugs in combination. We
calculated the DAC dose for the murine model based on the
typical DAC dose applied to patients, while the dose of ATRA was
consistent with previous articles [38, 39]. On day 17, DAC
administration reduced the leukaemia burden, while ATRA had
no apparent effect. Compared with the single-agent treatments,
the combined treatment remarkably reduced the tumour burden,
manifested in a significant reduction in bioluminescence (Fig. 6a).
The leukaemia burden was lowest in the COM group, as indicated
by the photon intensity (Fig. 6b, P < 0.05).
Although the mice treated with DAC alone survived longer than

those who received the vehicle or ATRA, the combined DAC and
ATRA regimen led to significantly longer survival than DAC only
(median survival time of 32 days for the combination group vs.
22 days for DAC monotherapy group, P < 0.05, Fig. 6c).
Hematoxylin–Eosin (HE) and immunohistochemistry (IHC) staining
showed that the DAC and ATRA combination treatment markedly
reduced the number of leukaemia cells infiltrating the spleen
(Fig. 6d). This was consistent with the photon intensity results
showing that DAC and ATRA synergistically decreased the
leukaemia burden. Therefore, we showed that the DAC and ATRA
combination is a promising treatment regimen for HR-MDS and
AML patients.

DISCUSSION
Our results show that DAC and ATRA exert synergistic cytotoxic
effects in MDS and AML cells. Treatment with DAC alone activated
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the antioxidant Nrf2-ARE pathway in MDS and AML cells. However,
when combined with ATRA, it activated the RARα-Nrf2 complex
and blocked Nrf2 activation, leading to ROS accumulation and
ROS-dependent anti-tumour effects. Based on these data and

those of previous studies, we propose a mechanism underlying
DAC resistance mediated by the RARα-Nrf2 complex (Fig. 7).
Previous studies suggests that the combination of DAC and

ATRA synergistically induces apoptosis, growth inhibition, and

0/2

0.0

0.2

0.4

0.6

0.8

1.0

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

0.0
0.25 0.5

1

1

2

2

4

4

0.25 0.5 1 2 480.5
1 2 4 80.5

0.5

1.0

1.5

0.0

0.5

1.0

1.5

MOLM-13

DAC

ATRA

COM

1.5
2.0

0.8 –
– –

+ – +
++

–
– –

+ – +
++4.0

DAC

MDS-L

Clea
ve

d 
Cas

pa
se

3

Clea
ve

d 
PA

RP

Clea
ve

d 
PA

RP

Clea
ve

d 
Cas

pa
se

3
Cleaved PARP

DAC conc./ATRA conc. (μM/μM) DAC conc./ATRA conc. (μM/μM) DAC conc./ATRA conc. (μM/μM)

DAC conc./ATRA conc. (μM/μM)DAC conc./ATRA conc. (μM/μM)DAC conc./ATRA conc. (μM/μM)

ATRA (μM)
DAC (μM)

DAC μM

MDS-L a 
DAC ML-COM - Algebraic estimate 

ATRA 

COM 

ATRA μM
DAC μMFractional effect

Fractional effect

COM - Algebraic estimate

ATRA μM

0 4 0 4 0

0 0.4 0.4 0.8

0

1.6

4

1.60DAC μM

ATRA μM

Cleaved Caspase 3

GAPDH

MOLM-13MDS-L

c

d

MOLM-13

MDS #1

AML #1

C
el

l v
ia

bi
lit

y 
fo

 c
on

tr
ol

 (
%

)
C

el
l v

ia
bi

lit
y 

fo
 c

on
tr

ol
 (

%
)

C
el

l v
ia

bi
lit

y 
fo

 c
on

tr
ol

 (
%

)

C
el

l v
ia

bi
lit

y 
fo

 c
on

tr
ol

(%
)

A
po

pt
os

tic
 c

el
l (

%
)

M
D

S
-L

M
O

LM
-1

3

P
I +

P
I +

A
po

pt
os

tic
 c

el
l (

%
)

AML #2 AML #3

MDS #2 MDS #3

DAC

COM
DAC

COM

C
el

l v
ia

bi
lit

y 
of

 c
on

tr
ol

 (
%

)
C

el
l v

ia
bi

lit
y 

of
 c

on
tr

ol
 (

%
)

C
el

l v
ia

bi
lit

y 
of

 c
on

tr
ol

 (
%

)
C

el
l v

ia
bi

lit
y 

of
 c

on
tr

ol
 (

%
)

COM

DAC

DAC
COM

DACDAC
COMCOM

COM

0
0/2 2/2 4/2 8/2

0/2 1/2 2/2 4/2 8/2 16/2 0/2 1/2 2/2 4/2 8/2

20

40

60

80

120

100

60

70

80

90

100

120

110

60

0/2 1/2 2/2 4/2 8/2 16/2 0/2 2/2 4/2 8/2

2/2 4/2 8/2 16/2

70

80

90

100

120

110

0

20

40

60

80

120

100

0

20

40

60

80

120

100

0

20

40

60

80

120

100

R
at

io
 (

G
A

P
D

H
 a

s 
co

nt
ro

l)

C
l +

/–
 1

.9
6 

s.
d.

C
l +

/–
 1

.9
6 

s.
d.

Annexin V +

Ctrl 0.75 1.5 3.0

DAC (μM)

A
T
R
A

(μM)

A
T
R
A

(μM)

b

Annexin V +

DAC (μM)

Ctrl 0.4 0.8 1.6

0

4 

0

2 

0

10

20

30

40
*

*
**

4

0.8

0 2 0 2 0

0 0.75 0.75 1.5

0

3.0

2

3.00DAC μM

ATRA μM 2

1.5

0

10

20

30

40

*

** **

98.08%

0.03%

1.60%

0.29%

6.42%

1.57%0.10%

91.91% 83.87%

0.10%

12.81%

3.22%

81.01% 15.30%

3.51%0.18%

96.64% 2.81%

0.53%0.02%

15.41%

2.79%0.01%

81.79% 75.56% 20.34%

4.05%0.05%

64.94%

0.12%

28.38%

6.56%

77.70% 18.13%

4.09%0.09%

98.14% 1.60%

0.22%0.04%

85.02% 12.14%

2.74%0.10% 3.72%

80.27%

0.13%

15.89% 80.11% 15.78%

3.98%0.12%

97.30% 2.25%

0.43%0.02%

68.34% 25.67%

5.77%0.22%

68.25% 25.44%

6.00%0.31%

102.7

101.1

103

105

107.3

101.1

103

105

107.3

105

Annexin V FITC-H Annexin V FITC-H Annexin V FITC-H Annexin V FITC-H

P
I-

H

101.1

103

105

107.3

P
I-

H

101.1

103

105

107.3

P
I-

H

101.1

103

105

107.3

P
I-

H

P
I-

H

101.1

103

105

107.3

101.1

103

105

107.3

101.1

103

105

107.3

101.1

103

105

107.3

101.1

103

105

107.3

101.1

103

105

107.3

101.1

103

105

107.3

101.1

103

105

107.3

P
I-

H

P
I-

H

P
I-

H

P
I-

H

P
I-

H

P
I-

H

P
I-

H

P
I-

H

101.1

103

105

107.3

P
I-

H

101.1

103

105

107.3

P
I-

H

101.1

103

105

107.3

P
I-

H

107 108.9 102.7 105 107 108.9 102.7 105 107 108.9 102.7 105 107 108.9

102.7 105

Annexin V FITC-H Annexin V FITC-H Annexin V FITC-H Annexin V FITC-H

107 108.9 102.7 105 107 108.9 102.7 105 107 108.9 102.7 105 107 108.9

102.7 105

Annexin V FITC-H Annexin V FITC-H Annexin V FITC-H Annexin V FITC-H

107 108.9 102.7 105 107 108.9 102.7 105 107 108.9 102.7 105 107 108.9

102.7 105

Annexin V FITC-H Annexin V FITC-H Annexin V FITC-H Annexin V FITC-H
107 108.9 102.7 105 107 108.9 102.7 105 107 108.9 102.7 105 107 108.9

L. Wang et al.

694

British Journal of Cancer (2023) 128:691 – 701



Ctrl

0

1

2

3

4

0

5

10

15

20

0

5

10

15

25

20

0

1

2

3

4

DAC ATRA COM

MDS-L

M
ito

R
O

S
 (

fo
ld

s)

M
ito

R
O

S
 (

fo
ld

s)
M

ito
R

O
S

 (
fo

ld
s)

M
ito

R
O

S
 (

fo
ld

s)
  

MDS patients (n = 3) AML patients (n = 3)

MOLM-13

DACCtrl ATRA COM Ctrl DAC ATRA COM

Ctrl DAC ATRA COM

Without NAC

With NAC

Without NAC

With NAC

b

a

MDS-L

Annexin V +

30

DAC COM

DAC COM

20

10

0

P
I + A
nn

ex
in

 V
+

 (
%

)

30

40

20

10

0

A
nn

ex
in

 V
+

 (
%

)

MOLM-13

P
I +

Annexin V +

NAC

DAC

ATRA

P
I-

H

NAC

DAC

ATRA

– + – +

+ + + +

– – + +

– + – +

+ + + +

– – + +

87.80%

Annexin V FITC-H

2.96%

8.38%0.84%

96.32%

0.18% 2.24%

1.26% 78.45%

0.63% 15.96%

4.96% 89.70%

0.07% 7.60%

2.63%

92.84%

0.05% 1.23%

5.88% 68.14%

0.40%

26.45%

5.01%

80.13%

0.09%

17.78%

2.00%

77.32%

0.13% 5.14%

17.41%

10
2.7

10
1.1

10
3

10
5

10
7.3

P
I-

H

10
1.1

10
3

10
5

10
7.3

P
I-

H

10
1.1

10
3

10
5

10
7.3

P
I-

H

10
1.1

10
3

10
5

10
7.3

P
I-

H

10
1.1

10
3

10
5

10
7.3

P
I-

H

10
1.1

10
1.1

10
3

10
5

10
7.3

P
I-

H

10
1.1

10
3

10
5

10
7.3

P
I-

H

10
3

10
5

10
7.3

10
5

10
7

10
8.9

Annexin V FITC-H

10
2.7

10
5

10
7

10
8.9

Annexin V FITC-H

10
2.7

10
5

10
7

10
8.9

Annexin V FITC-H

10
2.7

10
5

10
7

10
8.9

Annexin V FITC-H

10
2.7

10
5

10
7

10
8.9

Annexin V FITC-H

10
2.7

10
5

10
7

10
8.9

Annexin V FITC-H

10
2.7

10
5

10
7

10
8.9

Annexin V FITC-H

10
2.7

10
5

10
7

10
8.9

Fig. 2 MitoROS elevation induced cellular apoptosis in MDS and AML. a Combination treatment with DAC and ATRA markedly elevated the
mitoROS level compared with DAC alone (P < 0.05). MDS-L and MOLM-13 cells were treated with DAC (0.8 and 1.5 μM, respectively) or ATRA (4
and 2 μM, respectively), or both drugs in combination. Primary cells of MDS and AML were treated with DAC (1 μM) or ATRA (1 μM) alone, or
both drugs in combination. After exposure for 48 h, mitoROS levels were measured by MitoSOX Red staining. b Pre-treatment with NAC of
MDS and AML cells reversed the apoptosis induced by DAC alone and the combined DAC and ATRA treatment (P < 0.05). MDS-L and MOLM-13
cells were pre-treated with 2.5 mM NAC for 2 h and subsequently treated with DAC, alone or combined with ATRA, at the indicated
concentrations for 48 h. Apoptosis measurements are shown (n= 3). NAC N‐acetyl‐L‐cysteine, ROS reactive oxygen species.

Fig. 1 Effect of DAC and ATRA on cellular viability and apoptosis in MDS and AML cells. a Co-treatment with DAC and ATRA inhibited the
cellular viability of MDS-L and MOLM-13 cells. The cells were measured by CellTiter-Lumi™ Assay after treatment with DAC and/or ATRA at the
indicated concentrations for 48 h. b Combined treatment with DAC and ATRA enhanced the apoptosis of MDS-L and MOLM-13 cells. The cells
were treated with DAC and/or ATRA at the indicated concentrations for 48 h and co-stained with annexin V and PI, after which apoptosis was
measured by flow cytometry. The results are presented as bar graphs (n= 3). c The expression of cleaved caspase-3 and cleaved PARP
increased significantly after treatment with a combined strategy compared to the single drug treatment. The expression of cleaved caspase-3
and cleaved PARP was determined by western blotting and quantified by ImageJ (NIH, Bethesda, MD, USA). GAPDH served as a loading
control. d Co-treatment with DAC and ATRA significantly inhibited cell viability in primary blast cells of MDS and AML patients as measured by
a CellTiter-Lumi™ Assay. The data are presented as the mean ± SD from three independent experiments. * P < 0.05, ** P < 0.01, *** P < 0.001.
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ATRA markedly reversed the upregulated expression caused by DAC.
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differentiation of AML cells by inducing the expression of anti-
tumour genes [28] and modulating the miR-34a/MYCN axis
in vitro [25]. Consistent with previous reports, the DAC and
ATRA combination treatment exerted a synergistic anti-tumour

effect on both cell lines and primary samples of MDS and AML
patients. The doses of ATRA used to treat the MDS-L and MOLM-
13 cell line models (4 and 2 μM, respectively) were higher than
the ATRA concentrations usually used to treat MDS/AML cell
lines [38, 40–43] (1 or <1 μM). However, in this study, a low
ATRA concentration of <4 μM (for MDS-L) or <2 μM (for MOLM-
13) triggered no pro-apoptotic and anti-growth effects; the
sensitivity to ATRA may vary across cell lines. Moreover, in a
previous study of ATRA pharmacokinetics, 11 healthy volun-
teers were intravenously administered liposomal (L)-ATRA
(90 mg/m2 every other day over 15 days) and the maximum
plasma ATRA concentration was 8146 ng/ml (27.1 μM). L-ATRA
maintained a stable plasma concentration with moderate
adverse effects. The doses that we used to treat the MDS-L
and MOLM-13 cell lines were far lower than that mentioned
above, suggesting that our doses have low toxicity and are well-
tolerated [44].
Our in vivo experiment showed that the combined treatment

markedly reduced the leukaemia burden and improved survival in
a MOLM-13 xenograft B-NDG model compared with DAC alone.
Previously, a leukaemic murine model was administered ATRA-
release pellets. Once implanted subcutaneously, the pellets were
designed to release ATRA over 21 days at an average dose of 0.23,
0.5, or 1.2 mg/day [45]. In our study, mice were treated with ATRA
by gastric lavage, at a dose of 10 mg/kg for 21 days. As the
average mouse weighs ~20 g, the average ATRA dose of each
mouse was about 0.2 mg/day, similar to the minimal dose
described above.
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Incubation of MDS-L and MOLM-13 cells with ATRA in the
presence of DAC showed that ATRA counteracted the activation of
the Nrf2-ARE antioxidant pathway, caused ROS accumulation and
ROS-dependent cytotoxicity, and thereby overcame DAC resistance.
Under homoeostatic conditions, Nrf2 localises in the cytoplasm and
binds to its repressor Kelch-like ECH-associated protein 1 (Keap1),
which targets Nrf2 for proteasomal degradation. In response to
oxidant stress, Nrf2 is released from Keap1 and translocates to the
nucleus [46–48]. Next, Nrf2 interacts with ARE to induce the
expression of Nrf2-responsive genes [49]. However, the mechanism
through which ATRA inhibits Nrf2 is unclear, and the results of

previous studies of different tumours differ. Valenzuela et al.
reported that ATRA prevented Nrf2 from translocating into the
nucleus in APL cells, thus counteracting Nrf2-ARE activation [50].
However, Wang et al. suggested that ATRA blocked post-
translocational Nrf2 activity in the MCF-7 breast cancer cell [51].
Simialr to the MCF-7 cell results, ATRA prevented transcriptional
activation of cytoprotective and detoxifying genes NQO1, DUSP1,
GPX2, and FTH downstream of Nrf2-ARE in the MDS-L and MOLM-13
cells, without inhibiting Nrf2 translocation to the nucleus.
ATRA interacts with retinoic acid receptors (RARs) and has

pleiotropic effects [52]. RARs are ligand-dependent transcription
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factors that specifically regulate retinoic acid signalling by forming
heterodimers with the retinoid X receptor (RXR) [53]. RAR/RXR
heterodimers influence transcriptional activation by binding and
recruiting co-activators [53, 54] and co-repressors [55, 56]. Co-
repressors such as nuclear receptor co-repressor (NCoR) recruit
large repressor complexes, including histone deacetylases
(HDACs), thereby inhibiting the transcription of target genes
[57–59]. RARα KD in MDS-L and MOLM-13 cells reversed the
apoptosis induced by the DAC and ATRA combination treatment,
but not that induced by DAC alone. A Co-IP assay confirmed the
presence of RARα-Nrf2-HDAC1 after treatment with DAC, alone
and in combination with ATRA. The HDAC1 expression level of
the combination group was significantly lower than that of the
single DAC group, suggesting that ATRA activated the RARα-Nrf2
complex in the presence of DAC. Moreover, Wang et al. reported
that ATRA exposure reduced Nrf2-ARE binding [51]. Given the
previous reports, we suggest that the activated RARα-Nrf2
complex carrying less HDAC1 exhibited less affinity for the ARE
enhancer. Therefore, Nrf2 activation was inhibited, resulting in
mitoROS induction and enhanced cytotoxicity.
This study showed that DAC and ATRA synergistically enhanced

apoptosis in MDS and AML cells, in vivo and in vitro. Based on
these findings, a multi-center clinical trial is currently underway at
our center to explore the effect of the combination of DAC and
ATRA on newly diagnosed MDS with excess blast (MDS-EB)
patients (ChiCTR1800018307). Interestingly, an ongoing clinical
trial (NCT02807558) sought to determine whether the selective
RARα agonist SY-1425 [60] and azacytidine (AZA) could benefit
AML and MDS patients. The preliminary data showed that the
combination treatment benefitted newly diagnosed and relapsed/
refractory AML patients [61, 62].
This study had some limitations. Firstly, we did not construct a

patient-derived xenograft (PDX) model to explore the in vivo
effects of the drug combination. Moreover, single doses of DAC
and ATRA were applied in the murine model, resulting in a lack of
comparison of the effects of different concentrations on
leukaemia burden and survival. In addition, we did not perform
RNA sequencing. Since we collected the primary samples from
patients enroled in the ongoing clinical trial, these primary
samples will be sequenced in a follow-up study. We hope that this
will reveal additional molecular mechanisms meriting further
exploration. Finally, the current study was limited by its preclinical
nature, further randomised controlled trials of patients with MDS
and AML are needed to validate the results.
In conclusion, the current study indicates that DAC and ATRA in

combination synergistically induce apoptosis in MDS and AML
cells, thereby showing an enhanced anti-tumour effect in vivo and

in vitro. Mechanistically, as a single agent, DAC activated the
antioxidant Nrf2-ARE signalling pathway in MDS and AML cells,
leading to DAC resistance. ATRA blocks Nrf2 activation by
activating the RARα-Nrf2 complex, and causes ROS accumulation
and ROS-dependent cytotoxicity. Therefore, a regimen combining
DAC and ATRA for HR-MDS and AML has clinical potential and
merits further exploration.
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